
Event-Based Scheduling for Energy-Efficient QoS (eQoS)
in Mobile Web Applications

Yuhao Zhu Matthew Halpern Vijay Janapa Reddi

Department of Electrical and Computer Engineering
The University of Texas at Austin

yzhu@utexas.edu, matthalp@utexas.edu, vj@ece.utexas.edu

Abstract
Mobile Web applications have become an integral part of

our society. They pose a high demand for application quality
of service (QoS). However, the energy-constrained nature of
mobile devices makes optimizing for QoS difficult. Prior art
on energy efficiency optimizations has only focused on the
trade-off between raw performance and energy consumption,
ignoring the application QoS characteristics. In this paper,
we propose the concept of energy-efficient QoS (eQoS) to
capture the trade-off between QoS and energy consumption.
Given the fundamental event-driven nature of mobile Web ap-
plications, we further propose event-based scheduling as an
optimization framework for eQoS. The event-based scheduling
automatically reasons about users’ QoS requirements, and
accurately slacks the events’ execution time to save energy
without violating end users’ experience. We demonstrate a
working prototype using the Google Chromium and V8 frame-
work on the Samsung Exynos 5410 SoC (used in the Galaxy
S4 smartphone). Based on real hardware and software mea-
surements, we achieve 41.2% energy saving with only 0.4% of
QoS violations perceptible to end users.

1. Introduction
Mobile applications are user-facing and highly interactive, un-
like traditional background and batch-processing workloads.
Guaranteeing satisfactory quality-of-service (QoS) experience
for mobile end users becomes crucial. However, a single-
minded pursuit of a performance-oriented mobile system de-
sign is infeasible, because today’s mobile devices are energy
constrained. As lithium-ion battery density starts plateau-
ing [1], and battery form factor begins to mature [2], the total
device energy budget (battery density × battery volume) is
expected to saturate in the near future [84]. Energy efficiency
is now the first-class design constraint.

To optimize for energy efficiency, some mobile systems
have started adopting the heterogeneous multicore architecture
that incorporates cores with different microarchitectures (e.g.,
out-of-order vs. in-order), each with various dynamic voltage
and frequency scaling (DVFS) capabilities. An application is
scheduled to the core and frequency setting that best trades
off performance with energy consumption. Unfortunately,
traditional scheduling techniques do not take into account the
application QoS characteristics. Instead, they simply try to

trade off raw machine performance (latency or throughput) for
energy consumption. Such a QoS-agnostic approach creates
two major energy efficiency problems:
• First, the system responsiveness may exceed the human

acceptable limit–i.e., an end user’s QoS expectation is vio-
lated. As a result, users abandon the service. For example,
40% of mobile users will abandon a webpage that takes
more than 3 seconds to load [3]. All the energy consumed
up until the service abandonment is then wasted.

• Second, the system may respond faster than end users’
QoS expectations. Under this circumstance, a certain por-
tion of the energy is wasted without any user-perceptible
value. For example, human-computer interaction research
shows that users can tolerate 100 ms latency for certain
interactive tasks [60, 85]; however, we find that Android’s
interactive CPU governor [4] tends to finish interac-
tive tasks faster than 100 ms by using the highest CPU
performance, leading to unnecessary energy waste.

To address these QoS-related energy efficiency issues that
are not well-captured by the traditional performance-energy
trade-off, we propose a new concept called energy-efficient
QoS (eQoS). eQoS requires appropriate scaling of the CPU’s
capability such that it provides “just enough” performance
to meet end users’ QoS expectations with minimal energy
consumption. It emphasizes the QoS-energy trade-off as a new
way of reasoning about the energy efficiency optimizations in
the mobile Web domain.

In order to apply eQoS intelligently to trade off QoS for
energy reduction, we require a step-by-step approach that
imposes the following three requirements. First, it is important
to systematically understand application QoS and how exactly
QoS is affected by machine performance. We leverage an
important observation that mobile Web applications are built
atop the event-driven model, where various user interactions
are translated to different application events. Our analyses
show that two fundamental event-level properties, i.e., event
intensity and event latency, reflect how user QoS experience
is affected by machine performance. This further allows us to
classify application events into three distinct QoS categories
according to their intensity and latency characteristics.

Second, on the basis of understanding application QoS, it
is important to design an eQoS-oriented runtime system that
specifically leverages the QoS-energy trade-off. Simply ap-

plying traditional performance-energy optimizations may lead
to suboptimal decisions. We propose a novel event-based
scheduling mechanism that serves as the basis for trading-off
QoS with energy consumption. The scheduler automatically
reasons about users’ QoS expectations based on the applica-
tion’s event characteristics, and accurately predicts the ideal
core and frequency setting that guarantees satisfactory user
QoS experience while achieving significant energy savings.

Third, it is also important to have a metric that can be
used to quantitatively evaluate how good a particular eQoS
optimization is compared to other eQoS optimizations. We
propose such a metric, called QoS-per-Energy (QPE), which
quantifies the trade-off between QoS and energy consumption.
QPE can also be used to compare the eQoS optimization
efficiency across different types of systems.

We demonstrate our work using Google Chromium (the
Chrome browser’s open source version) [5] on the Exynos
5410 SoC (used in Samsung Galaxy S4). Real system mea-
surements show that an eQoS-oriented event-based scheduler
saves 41.2% energy over always supplying the highest per-
formance with only 0.4% more QoS violations. Compared
to Android’s interactive and ondemand governors, the
event-based scheduler achieves 37.9% and 22.9% energy sav-
ings, respectively, with only 0.1% more QoS violations.

In summary, we make the following contributions:
• We propose eQoS. It is a framework for reasoning about the

QoS-energy trade-off in interactive mobile applications.
• We propose event-based scheduling. It accounts for the

fundamental event-driven nature of interactive mobile Web
applications, and provides a framework to trade off QoS
with energy consumption.

• We propose QPE. It is an eQoS metric that quantifies the
trade-off between application QoS and energy consumption.
QPE can be used in QoS-aware energy efficiency optimiza-
tions in the interactive mobile Web domain.
The paper is organized as follows. Sec. 2 presents the exper-

imental methodology. Sec. 3 introduces the concept of eQoS,
which motivates the need to orchestrate energy efficiency op-
timizations with application QoS in mobile systems. Sec. 4
systematically dissects application QoS from an event per-
spective, and identifies the key event characteristics that affect
application QoS. Leveraging the event-level insights, Sec. 5
proposes an event-based scheduling framework that serves as
the basis for trading off QoS with energy. Sec. 6 shows that our
scheduler achieves better eQoS than traditional approaches.
We present related work in Sec. 7, and conclude in Sec. 8.

2. Experimental Setup

In order to establish sound conclusions, we base our study on
real measurements of contemporary hardware and software
systems. This section describes our experimental setup, includ-
ing mobile hardware/software platforms and data acquisition
techniques for hardware- and software-based measurements.

Hardware Platform We use the ODroid XU+E devel-
opment board [6] that hosts the Samsung Exynos 5410 SoC
as the hardware platform. The Exynos 5410 SoC contains
a representative big.LITTLE heterogeneous multicore CPU
subsystem. The big.LITTLE system is divided into two homo-
geneous quad-core clusters, a big Cortex-A15 (A15) cluster
and a little Cortex-A7 (A7) cluster, both manufactured using
28 nm technology. The four cores within a cluster can be
individually enabled and disabled. The A15 processor is a
3-issue out-of-order core with 32 KB L1 instruction and data
caches [7]. It operates from 800 MHz to 1.8 GHz at a 100 MHz
granularity. The A7 processor is a dual-issue in-order core [8].
It has private L1 caches of the same size as in A15. It operates
from 350 MHz to 600 MHz at steps of 50 MHz.

Software Infrastructure The ODroid board runs Android
Version 4.2.2. We use Google’s Chromium Web browser
(Version 33.0) as the underlying runtime environment for the
mobile Web applications studied in this paper. We modified
the Timeline tool in the Chrome DevTools [9] as well as the
V8 built-in profiler [10] to create an instrumentation tool that
enables all the necessary timing instrumentations.

Energy Measurement The ODroid development board
has built-in current sensing resistors for both the big and little
cluster and the memory module. Each sense resistor is 10 mΩ.
We use the National Instruments DAQ Unit X-series 6366 to
simultaneously collect voltage measurements across the big
and small CPU clusters, as well as the memory, at a rate of
1,000 samples per second. We did not observe any noticeable
difference at 1 million samples per second. Thus, we preferred
a lower sampling rate to enable faster measurement processing.

Reproducibility Interactive program behavior largely de-
pends on both user input and its timing. It is important for en-
suring reproducibility of inputs within interactive experiments.
We embed all interactions into the benchmarked applications.
This ensures that the same event sequences occur in each ex-
periment trial. Each experiment has at least three trials. We
observe less than 3% variation for almost all measurements.

3. eQoS: Trade-off Between QoS and Energy
Mobile system designs must optimize for energy efficiency.
Conventional notions of energy efficiency typically trade off
raw machine performance with energy consumption. For in-
teractive applications, however, raw performance does not
directly correspond to application QoS, and as such simply
trading off performance with energy may lead to a subop-
timal energy efficiency point. Therefore, to constructively
reason about energy efficiency in the interactive application
domain, we introduce a new concept called energy-efficient
QoS (eQoS) that captures the QoS-energy trade-off, rather
than the traditional performance-energy trade-off.

We illustrate the relationship between application QoS, per-
formance, and energy savings in Fig. 1. Performance degrades
from left to right on the x-axis. The left and right y-axes indi-
cate QoS and energy savings, respectively. Foundational work

PH

Imperceptible

0

PI PU PL

QoSU

QoSI

Tolerable Unusable

-ESU

ESI

EST

 Q

ua
lit

y-
of

-S
er

vi
ce

 (Q
oS

)

 E

nergy S
avings (E

S
)

 Performance Degradation

Fig. 1: The interplay between QoS, performance, and energy.

in human-computer interaction research [55, 60, 74, 76, 77, 85]
indicates that interactive application QoS can be classified into
three distinct states as machine performance degrades: imper-
ceptible [PH ,PI], tolerable (PI ,PU], and unusable (PU ,PL].

In the imperceptible region, performance can degrade with-
out any user-perceptible QoS loss while achieving more en-
ergy saving. Imperceptible QoS, QoSI , is maintained until
performance reaches PI , the lowest performance capability
that provides QoSI . In the imperceptible region, supplying
higher performance simply leads to more energy waste without
adding any end-user value. For example, the most conserva-
tive approach to guarantee application QoS is to supply the
peak performance of PH ; it leads to an energy waste of ESI .

Beyond PI , the application QoS enters the tolerable region,
where the QoS is deteriorated as the performance reduces,
but still remains tolerable. Any QoS could be acceptable in
this region depending on the usage scenario or specific user
pattern [92, 94]. Therefore, the tolerable QoS region exhibits
a traditional performance-energy trade-off space.

As the performance further degrades, the QoS is eventually
violated at PU , where the user deems the QoS as unaccept-
able. PU is the performance limit where users no longer feel
engaged by the application. At PU and beyond, users abandon
the service. As a result, any energy consumed up until the
service abandonment (ESU) is wasted, because the underlying
computation does not provide any utility to the user.

In summary, eQoS represents one of following three opti-
mization objectives of a mobile system: 1) when the user QoS
expectation is high, guaranteeing imperceptible QoS experi-
ence with the minimal energy by exploiting the performance
slack between PH and PI , 2) when the user QoS expectation
is low, guaranteeing usable QoS experience with the minimal
energy by exploiting the performance slack between PI and
PU , and 3) without specific user QoS expectation, allowing
flexible performance-energy trade-off between PI and PU .

4. QoS in Mobile Web Applications
In this section, we introduce a general methodology to sys-
tematically identify the three QoS regions (imperceptible, tol-
erable, and unusable) and determine the PI and PU values in
interactive mobile Web applications. By identifying and an-
alyzing the applications using two fundamental event-level
characteristics, i.e., event intensity and event latency, we show

that applications fall into one of three categories depending
on the two event characteristics (Sec. 4.1). We then leverage
insights from human-computer interaction research, and use
event intensity and latency characteristics to identify the PI
and PU values for each application category (Sec. 4.2).

4.1. Application Event Characteristics

Web applications are built atop the event-driven execution
model to achieve interactivity. Various user interactions, sen-
sor inputs (e.g., gyroscope orientation), and application in-
ternal tasks (e.g., timers, completion of loading a webpage
element) are translated to one or more applications events.
Each event is registered with an event handler that is executed
when the event is triggered. Internally, the browser employs a
FIFO-like event queue where any newly generated events are
placed at the end. A software thread continuously monitors the
event queue and dequeues any available event from the head
of the queue for processing, one event at a time. Therefore,
events in the queue are processed in a synchronous manner.

The event-driven nature of mobile Web applications mo-
tivates us to analyze them from an event perspective. We
identify two fundamental event-level characteristics: event
intensity and event latency. Event intensity is the frequency
of events triggered per second. Event latency is defined as the
event execution time between when an event starts and when
the results of the event becomes ready for the user to interact
with. It indicates the responsiveness to an event. Let us explain
how the two event characteristics affect the application QoS.

Event intensity reflect an application’s prevailing form of
human-computer interaction. With high event intensity, users
are interacting with a high volume of repetitive events and
having an “indulgent” session. Therefore, users interpret their
QoS experience by the event throughput. With low event
intensity, users interpret their QoS experience based on the
application’s responsiveness to each event, i.e., latency [60].

Typically, users have high tolerance for high-latency events
because they are aware that a computationally intensive job is
being processed [77]. As a result, their tolerance thresholds,
by which they deem an application is imperceptible, tolerable,
or unusable, are high. For low-latency tasks, such as typing or
swiping, users expect a more seamless experience. As a result,
their thresholds for QoS are lower [71].

To study event characteristics in detail, we examined a wide
range of typical interactive mobile Web applications. Table 1
shows a selected subset of those applications. We considered
several other applications, but do not include them due to
space limitations. We considered extending prior work to
meet our needs, but we found that the applications in prior
work did not provide sufficient coverage of event intensity
and latency. Thus, we needed to identify the applications in
Table 1 that provided the coverage needed for discovering new
insights from an application event perspective. We explain the
distinction further in the related work section (Sec. 7).

Interactive mobile Web applications have strong pairings of

Table 1: Workload Description

Category
Event

Intensity
Event

Latency
(PI, PU)

Application
Domain

Workload

Job
Delay

Low
(� 1/s)

High (1, 10) s

PDF Rendering Pdf.js
Photo Editing CamanJS
Cryptography Crypto
Compression Zlib

Response
Latency

Low
(∼ 1/s)

Low (50, 100) ms
MVC Apps

Backbone.js
Ember.js
GWT
jQuery

Web Browsing
google

ebay

sina

Painting Paper.js

FPS
High

(∼ 30/s)
Low (60, 30) fps

Web Gaming Doom
Animation Rain

event intensity and event latency. Their event characteristics
predominantly fall into one of these three categories: low
intensity and high latency, low intensity and low latency, or
high intensity and low latency. Because of the synchronous
event execution described earlier, high event intensity and high
event latency conflict with each other, and as such we do not
find applications that map to that specific combination.

Note that we focus on predominant application event char-
acteristics. Applications may contain events of different cate-
gories. However, our analysis indicates that an application’s
event execution is primarily dominated by one main category.

We examine the applications’ event characteristics us-
ing Fig. 2. We instrument the Web browser and gather the
average event behavior of the applications running on the A15
processor at its highest frequency (1.8 GHz). Fig. 2a shows the
average event intensity of the three event categories. There is
strong distinction between categories. Fig. 2b shows the CDF
of the event latency for each category. Each (x, y) point in the
figure corresponds to the percentage of total events (x) that
are at or below a particular execution latency (y). Once again,
we see distinct behavior across the three categories. Fig. 2c
illustrates how the applications are distributed in the intensity
versus latency space, where event intensity increases along the
x-axis from left to right and event latency increases along the
y-axis from bottom to top. It confirms that applications map
to three distinct categories.

4.2. Event Imperceptibility (PI) and Usability (PU) Values

We must identify PI and PU values for each application cate-
gory. In this section, we explain how we determine them for
the applications we examine. We introduce the applications,
explain their use cases, and provide rationale for the PI and PU
values we associate with each application category.

Although we describe our applications for the sake of com-
pleteness, the key takeaway from this section, however, is that
once any application is mapped into one of the three cate-

gories, we can apply the imperceptibility (PI) and usability
(PU) values that we have identified for other eQoS studies.
4.2.1. Low Event-Intensity, High Event-Latency
Applications with low event intensity and high event latency

typically require minimal user interaction to initiate computa-
tionally intensive tasks, or jobs. These jobs are typical of “job
delay” applications. Job delay applications have minimal user
interaction. Also, they exhibit low event intensity, which on
average is much less than 1 event per second (Fig. 2a). Due to
the computational intensity involved with these applications,
the event latency of this category of applications typically
exceeds 5 seconds and can reach over 10 seconds (Fig. 2b).

We study four application domains that embody events with
low intensity and high latency: PDF rendering, decryption/en-
cryption, compression, and photo editing. Although these
applications traditionally existed as browser plug-ins, they
are increasingly ported to pure Web applications to provide a
cleaner, faster, and arguably more secure Web experience [11].
For all four examples, we create a harness application with
which the user interacts to trigger application functionalities.

Pdf.js is a JavaScript-based PDF renderer that is supported
by Mozilla labs [12]. It has been adopted as the default PDF
viewer by many browsers such as Firefox and Opera [13]. In
our evaluation, we have the harness application render a 14-
page paper [14], which is initiated by a button press activity.

CamanJS is an Instagram-like application that represents
the emerging application domain of online photo editing fos-
tered by content sharing and social network websites [15].
In our experiment, the application applies a complex filter
(sharpening, color saturation, and blending) to an image.

Zlib is a compression utility that reflects using data com-
pression as a method to reduce network latency and maximize
network bandwidth. For example, Google now enables data
compression for Chrome in Android and iOS [16]. Our harness
application encapsulates the widely used JavaScript implemen-
tation of the Zlib library [17]. It compresses 1000 KB of data,
which is about the average size of today’s webpages [18].

Crypto is a encryption application that reflects the trend that
many mobile e-commerce and security-sensitive Web appli-
cations rely on data encryption and/or decryption to provide
a secure user experience. We evaluate an application that en-
capsulates the widely used JavaScript-based RSA kernel from
the JSBN library [19]. It encrypts and decrypts 960 KB data,
which is close to an average webpage size [18].

PI and PU values User-experience studies [77] show that
psychologically when users are aware of a computationally
intensive interaction, they can subconsciously wait up to 1 sec-
ond for the job to complete. Once the job execution exceeds
10 seconds, the user can no longer tolerate the delay. There-
fore, we use 1 second and 10 seconds as the imperceptible QoS
(PI) and unacceptable QoS (PU) boundaries, respectively, for
the job delay applications with low intensity and high latency.
4.2.2. Low Event-Intensity, Low Event-Latency
Applications with low event intensity and low event latency

2-3

2-1

21

23

25

lo
g

(#
 E

ve
nt

s
pe

r s
ec

on
d)

 Type III Job Delay Response
 Latency

 FPS

(a) Average event intensity.

10-1

100

101

102

103

104

105

Lo
g

(E
ve

nt
 la

te
nc

y)
 (m

s)

100806040200
Events (%)

Job Delay

Response Latency

FPS

(b) CDF of event latencies.

Job Delay:

Low Intensity
High Latency

Response
Latency:

Low Intensity
Low Latency

FPS:

High Intensity
Low Latency

 Intensity (evt/s)

 Latency (s)

 Not
Applicable

 CamanJS
 Pdf.js
 Crypto
 Zlib
 Paper.js
 Ember.js
 GWT
 Backbone
 jQuery
 sina
 google
 ebay
 Doom
 Rain

10-4 104

106

100

(c) Event latency versus intensity characteristics.

Fig. 2: Event characteristics for the different application categories.

usually originate from end-user interactions such as typing and
touch gestures that are computationally lightweight. We call
these applications “responsive latency applications.” For these
interactions, the users expect the responsiveness to be fluid.
Human interactiveness indicates that the event intensity is
typically low. Fig. 2a shows that the average event intensity for
these applications is only about four events per second. Fig. 2b
shows that the latency for about 60% of the events is lower
than 10 ms, indicating low event latency.

We study three applications that have low event intensity
and low event latency: painting, webpage browsing, and
model-view-controller (MVC) based Todo list. These applica-
tions require frequent human interactions–similar to graphical
user interface (GUI) environments, but in our case they belong
to the mobile Web context.

Paper.js represents the popular online painting application
domain. To date, there are over 500 painting applications in
Google Play. We study Paper.js [20], a Web port of Adobe
Illustrator’s original scripting language Scriptographer [21].
We draw a series of curves using touch gestures for evaluation.

Web browsing represents a well-established mobile Web ac-
tivity: surfing webpages. User QoS experience is strongly tied
to the initial webpage load time in Web browsing. For instance,
it is estimated that 79% of online shoppers will not return to
the website with slow load time [22]. We benchmark web-
pages used by BBench [66] and Zhu and Janapa Reddi [96],
and report the results for three webpages that represent diverse
webpage behavior. They are www.ebay.com, www.google.com,
and www.sina.com.cn. We delineate the webpage load time by
the Web browser’s internal onLoad event.

MVC is a popular design pattern for user interface appli-
cations [23]. Originally used in desktop applications, MVC
is now widely used to create most mobile Web applications.
We select an MVC-based todo list Web application from the
TodoMVC project [24] because todo applications are com-
mon. The TodoMVC todo application demonstrates key MVC
application features (e.g., data binding). Because MVC ap-
plications are typically developed using general application
frameworks, we benchmark four different implementations
of the todo list application, each using a different yet popu-
lar application framework. These frameworks include Back-
bone.js [25], Ember.js [26], Google Web Toolkit (GWT) [27],

and jQuery [28]. We perform the following sequence of inter-
actions on each of the applications: we first create a list item,
mark it as completed, and empty the todo list altogether.

PI and PU values For events of a short period, prior re-
search on user-experience [71] shows that users typically per-
ceive visible changes within 50 ms. In the same study, users no
longer perceive an instantaneous response after a 100 ms delay.
Therefore, we use 50 ms and 100 ms as the imperceptible QoS
(PI) and unacceptable QoS (PU) boundaries, respectively.

For Web browsing, however, we use 1 second and 3 seconds
as PI and PU , respectively, specifically because of real-world
usage scenarios. Google strongly promotes a 1 second web-
page load time experience to not cause interruptions in users’
flow of thought [29]. In addition, according to recent stud-
ies based on massive mobile Web users, 40% of Web users
abandon webpages that do not load within 3 seconds [3].
4.2.3. High Event-Intensity, Low Event-Latency
The last category of applications has an order of magnitude
higher event intensity than the previous two application cate-
gories (Fig. 2a). Such frequently executed events are usually
triggered by an internal timer [30, 31] or requestAnimation-
Frame [32] callbacks. The high event intensity implies that
user-experienced QoS is best evaluated by “event throughput.”

The most prevalent example of event throughout is found
in gaming or animation applications, where each timer event
corresponds to the computation of a frame. Throughput is
measured in the number of frames per second (FPS) [53].
Because of the high event intensity, this application category’s
event latency is low at only about 33 ms (Fig. 2b).

We studied two popular FPS applications. Doom is an
example of Web gaming and Rain is an example of physically
based animation. Traditionally, gaming and animations in the
Web were created using Flash technologies; however, recent
statistics show that over 90% of the graphics and animations
in the Web are now developed using JavaScript and rendered
to HTML5 canvas or SVG elements [33]. Doom and Rain
both rely on these emerging Web technologies.

Doom is a popular first-person shooter game that has been
ported to JavaScript [34]. It contains the Doom engine, which
attempts to realistically render 3D graphics in a 2D plane. It
is overall a computationally intensive task because it must
perform binary space partitioning [63] and raycasting simul-

taneously. We benchmarked the game for 2 minutes using a
prerecorded user action trace contained in the game.

Rain incorporates a complex and Web-based physics en-
gine that simulates raindrops [35]. It is part of the Chrome
Experiment [36]. We also benchmarked Rain for 2 minutes.

PI and PU values Prior research in gaming and anima-
tions shows that 60 and 30 FPS guarantee “seamless” and
“just playable” user experience, respectively [56]. To evaluate
eQoS, we used 60 FPS and 30 FPS as the imperceptible QoS
(PI) and usable QoS (PU) boundaries, respectively.

4.3. Summary

Fig. 2c summarizes our applications’ event characteristics.
Most mobile Web application events fall into one of three
distinct categories described in this section. Event intensities
and latencies vary significantly from one category to another,
which in turn dictates how the three QoS regions are mapped
(PI and PU values). To optimize interactive event-driven Web
applications, we must identify these events and leverage the
event-level characteristics for eQoS optimization.

5. Event-Based Scheduling

We propose an event-based runtime scheduling mechanism
to optimize for eQoS. Fig. 4 presents an overview of our
event-based scheduling framework that is integrated into the
Chromium Web browser. We first present our motivation for
performing event-based scheduling at the event handler level
(Sec. 5.1). We then provide a high-level design overview of
the event-based scheduling framework (Sec. 5.2) and then
describe its implementation details (Sec. 5.3). We target our
scheduler at asymmetric architectures comprising both power-
hungry out-of-order (big) cores and power-conserving in-order
(little) cores, each capable of performing DVFS, because such
systems are known to provide a large scheduling space [70].

5.1. Scheduling Unit

The scheduling unit in the event-based scheduler is the event
handler. Whenever an event is triggered, a corresponding
event handler is executed. Fig. 4 provides an example, show-
ing how event handlers H1, H2, and H3 (in that order) are
pushed into the event queue for execution. For events that
share the same PI and PU values, we find that their event han-
dlers have different execution latencies, and therefore lead to
different performance slacks. We must treat each event handler
differently and make scheduling decisions at that granularity.

We explain the variation in the event handlers’ execution
behavior using the Ember.js-based todo list application. Fig. 3
shows the sorted execution latencies of all the event handlers.
The x-axis corresponds to the event handlers and the y-axis
corresponds to the event handlers’ execution latencies. The
events fall into the low intensity and low latency category, and
thus share the same PI and PU constraints. In this example, we
assume that the performance target for the scheduler is to do

150

100

50

0

H
an

dl
er

 L
at

en
cy

 (m
s)

100500
Event Handlers

PU

 Large slack

 Small
 slack

Unusable
Region

onkeyup onchange

onclick

Fig. 3: Event handler variation in Ember.js todo list application.

“barely” better than the usability QoS threshold (PU), which as
described earlier is 100 ms for this event category (Sec. 4.2.2).

We observe a large latency variation for the handlers
in Fig. 3. We label three of the application’s representa-
tive event handlers as the application executes: onkeyup, on-
change, and onclick. The keyup event handler only processes
one keystroke and therefore finishes execution very quickly in
just 2 ms, which leaves a large amount of slack (98%) for the
scheduler to exploit. In contrast, the onchange event handler
adds one entry into the todo list. It requires about 50 ms for
execution, which translates to only about 50% slack in perfor-
mance. Lastly, the onclick event handler deletes all the entries
in the todo list. The processing time exceeds PU , and as such
there is no opportunity to exploit performance slack. Instead,
it requires a higher performance configuration, if available.

5.2. Scheduler Design Overview

The event-based scheduler predicts the ideal heterogeneous
architecture execution configuration (i.e., a <core, frequency>
tuple) whenever an event is triggered and the correspond-
ing event handler is executed such that it “barely” meets the
performance target with minimal energy consumption. The
performance target could be expressed as achieving some level
of QoS experience that is bound by PI and PU .

The scheduler consists of a simple dispatch front-end and
scheduling back-end. The front-end Dispatch unit simply de-
queues event handlers from the event queue one at a time in
compliance with the synchronous, atomic event-driven execu-
tion model. It also extracts related event information from the
application to pass to the back-end. The back-end consists of
a Detector, Model Constructor, and QoS Monitor. The detec-
tor automatically identifies each event’s QoS boundaries (i.e.,
PI and PU values), which impose constraints on how much
performance slack the scheduler can exploit. The model con-
structor builds a performance and energy model for each event
handler and predicts the latency and energy consumption for
an event handler’s execution. The models and the event QoS
information are then fed into the monitor, which determines
the architecture configuration for the event handler given the
PI and PU constraints. We now describe the functionality of
each, and how they interact as a whole scheduler.

Detector It identifies the PI and PU values for an event
handler. It automatically detects the values based on event
latency and event intensity information, but this is a two-step

Heterogeneous
Hardware

Event
Queue H3 … H2 … H1 Dispatch

<Core, Freq>

PI, PU

Detector

QoS
Monitor

Model
Constructor

R
ecalibrate

Event-Based Scheduler

Event
Info

M
odels

onkeyup=“H1 () {…}”

keyup

onchange=“H2 () {…}”

change

Event execution
feedback

onclick=“H3 () {…}”

click

Fig. 4: Event-based runtime scheduling framework.

process. In step one, the scheduler profiles the event handler at
the highest frequency on the big core to determine the event’s
category. Empirically, the detector deems the event handler
as “high latency” if its latency is higher than 0.8 second, and
vice versa. It deems an event handler as “high intensity” if its
execution frequency is higher than 3 times per second, and vice
versa. In step two, depending on the event intensity and latency
values it observes, the detector determines the event handler’s
PI and PU constraints. Recall that Sec. 4.2 explains how we
determine the PI and PU values for different event categories.
Additionally, the detector persistently stores and recalls the
runtime QoS profile information in an event profile file that
is read whenever the Web browser is relaunched to enable
cross-run optimization and amortize overhead effectively.

Model Constructor Due to the large variation across
different event handlers shown in Fig. 3, the model constructor
builds a performance and energy model for each event handler.
For example, H1, H2, and H3 in Fig. 4 have their own models.
We describe the model specifications in the next subsection.

QoS Monitor The monitor takes the predictive models
along with the PI and PU values from the detector to determine
the architecture configuration that should be used to execute
a handler to satisfy an optimization objective. For example,
if the goal is to minimize energy consumption in the imper-
ceptible region, the scheduler selects the core and frequency
combination that the model constructor predicts will consume
the least energy while still delivering performance above PI .

Furthermore, during application execution the monitor
keeps monitoring event latencies and intensities on the hard-
ware, and uses the information to adjust its prediction and
scheduling decisions on the fly, similar to conventional
feedback-driven optimizations [86]. We explain the detailed
operation of the monitor in the next subsection. Intuitively, it
is possible for the performance and energy models to underpre-
dict or overpredict the architecture configuration. Under such
circumstances, the monitor can decide to tune the predicted
frequency or transition between big and little cores. If the
models are deemed completely unusable, the monitor informs
the model constructor to recalibrate the models.

5.3. Scheduler Implementation Details

Performance Model We construct performance models for
big and little cores separately. Each model predicts the event
handler execution latency under different frequencies. We use
the classical DVFS analytical model initially proposed in [91],
and employed in subsequent work, such as [90]:

Execution time = Tmemory +Ndependent/ f

where f is the CPU frequency, Tmemory is the absolute memory
access time that does not change with respect to the CPU
frequency, and Ndependent is the number of CPU cycles that are
not overlapped with the memory accesses.

Strictly speaking, Ndependent is a function of f . However,
precisely constructing a model that varies Ndependent with f is
complex and introduces a large calibration overhead at runtime.
In our experiments, we find that it is feasible and necessary to
trade model precision for performance. In particular, we find
that treating Ndependent as a constant is sufficient in our case.

Given this simplification, the model constructor builds the
model with the event latency under two different frequencies
by calculating the value of Tmemory and Ndependent . The trade-
off in choosing the two frequencies is that on one hand using
two sufficiently different frequencies provides higher accu-
racy, since the execution latencies from closer frequencies
are more susceptible to measurement noise. But on the other
hand, using two frequencies that are extremely high and low
may result in execution falling in the imperceptible or unus-
able QoS regions, ultimately wasting energy. In our current
implementation, we use the highest and the second-highest
frequencies to construct the performance model. We find that
the run-to-run variation for the data collected using these two
frequencies is low, resulting in a robust model.

Energy Model The energy model predicts the energy
consumption of an event handler’s execution. We construct the
energy model on the basis of the performance model and the
estimated power consumption. We derive the power estimation
of all the core and frequency combinations by performing a
profiling run and storing the results in a local power profile file

that is read by the Web browser upon every launch. Persistently
storing and looking up the power profile file aligns with the
Android standard [37]. Alternatively, we can dynamically
derive the power consumption if power proxy counters, such as
Running Application Power Limit (RAPL) [58], are available
and exposed to software. In our case, a rough estimate of the
power consumption is sufficient.

QoS Monitor’s Operation The monitor uses determin-
istic finite automation (DFA) for each event handler to keep
track of what architectural configuration it needs to provide
for the event handler’s execution. The first two times an event
handler is executed, the QoS monitor informs the model con-
structor to build the performance and energy models. This lets
the monitor predict the architecture configuration during all
subsequent executions of the event handler.

After the initial model construction, the QoS monitor keeps
monitoring the event handler’s execution in order to perform
fine-grained tuning. More specifically, the monitor compares
the measured event handler execution latency with the schedul-
ing target. The monitor conservatively deems the event han-
dler’s model as overpredicting (or underpredicting) if the mea-
sured value is lower than 80% (or higher than 90%) of the
target latency. We empirically adopt these two threshold val-
ues because they are found to be effective in practice. Using
a two-bit saturating counter, the monitor then increases the
frequency by 100 MHz or transitions from the little core to the
big core if model is underpredicting, or vice versa.

The monitor switches from fine-tuning an event handler’s
execution to recalibrating its model if it detects that the model
is not performing well. We use a simple heuristic that is
efficient in practice. If the model mispredicts (i.e., either un-
derpredicts or overpredicts) more than four consecutive times,
the monitor requests the model constructor to recalibrate.

Overheads The QoS monitor accounts for scheduling over-
heads, which consist of two components: the overhead of the
scheduling algorithm itself and the overhead of changing the
architecture configuration (i.e, big/little core migration and/or
frequency scaling). The scheduling algorithm’s overhead is
dominated by model construction, which only requires solving
a two-variable linear system that imposes almost negligible
overhead. For changing the architecture’s configuration, we
assume 100 µs for frequency scaling and 20 µs for switching
cores, as indicated in [49, 50].

6. Evaluation
We first introduce our metric for evaluating eQoS optimiza-
tions (Sec. 6.1). We then describe the baseline schedulers that
the event-based scheduler (EBS) compares against (Sec. 6.2),
and validate the EBS’s model accuracy (Sec. 6.3). We present
a comprehensive evaluation of EBS using two important usage
scenarios (Sec. 6.4). Our results cast two important implica-
tions. First, simply optimizing for EDP does not guarantee
eQoS (Sec. 6.5). Second, having both big and little cores is
strongly beneficial for eQoS optimizations (Sec. 6.6).

6.1. Metrics for Evaluating Event-Based Scheduling

We propose a new metric called QoS per energy (QPE) as a
quantitative measure of eQoS to evaluate how well a system or
a particular optimization technique balances application QoS
with energy consumption. It is defined as follows:

QPE =
QoS Score

Energy Consumption

“QoS score” is a measure of how performance affects QoS.
It is a utility function that varies between 0 and 1. Ideally, one
would want to use the least amount of energy to achieve the
highest QoS score. Thus, a high QPE score indicates a better
eQoS optimization than an optimization with a low QPE.

Imperceptible QoS score is defined as 1. Unusable QoS
score is defined as 0. A QoS score in the tolerable region
varies with performance. A recent mobile user study shows
that the QoS in the tolerable region degrades linearly with
performance [94]. Therefore, in our current definition, the tol-
erable QoS score also varies linearly between 1 and 0. The lin-
earity may change depending on the actual QoS-performance
relationship of specific usage scenarios. For instance, QoS is
sometimes modeled as exponentially correlated with perfor-
mance degradation in the network domain [61] and desktop
applications [60]. Our formulation of QPE allows such cus-
tomized QoS scores to be readily plugged in if needed.

Comparison to Other Metrics Energy consumption and
QoS violations are two common metrics used to evaluate in-
teractive systems. In our paper, we define a QoS violation
as an event execution that exceeds a specified performance
target, PI or PU . QoS violations are important to quantify in
interactive mobile Web applications because they impact end
user experience. In response latency and FPS applications
(Table 1), a QoS violation is quantified by the percentage of
events handlers whose QoS is violated. In job delay applica-
tions, event handlers have high latency, and thus it is more
relevant to quantify the percentage that an event handler’s
latency exceeds the performance target.

Both of the above metrics, however, have limitations. Sim-
ply examining one metric without the other fails to compre-
hensively capture how a system trades off QoS with energy
consumption. On one hand, a system with low performance
would always achieve low energy consumption, but that can
lead to unusable QoS. On the other hand, a system that consis-
tently overprovisions performance will suffer from the fewest
QoS violations, but that can cause excessive energy consump-
tion due to exceeding the PI boundary.

Properties The QPE metric has the following three proper-
ties that capture the fundamental QoS versus energy trade-off.
First, QPE is monotonically decreasing beyond the impercep-
tible boundary, because the QoS score remains the same but
the energy consumption keeps increasing. It reflects the fact
that supplying higher performance beyond PI simply leads to
energy waste without adding any user-perceptible QoS value.

Second, QPE in the unusable region is 0 because the QoS
value is 0. It reflects the fact that any performance worse than
PU is meaningless from a user QoS perspective due to likely
service abandonment. Third, in the tolerable region where
no hard QoS is imposed, QPE enables evaluating different
performance-energy trade-offs. In the tolerable region, QPE is
equivalent to the EDP metric because the QoS value varies lin-
early with the performance in our definition. Sec. 6.5 provides
quantitative comparison between EDP and QPE.

6.2. Baseline Schedulers

We compare EBS with the following four baseline schemes:
1. Oracle-sched: It is the oracle event-based scheduler that

has a priori knowledge of all event handler latencies. It
always maximizes the QPE score.

2. Perf-sched: It provides the highest performance (i.e., big
core’s highest frequency) to minimize QoS violation. It is
the standard runtime policy for interactive applications.

3. Energy-sched: It achieves the lowest energy consumption
during each event handler’s execution.

4. Interactive-sched: It is the Android’s interactive
cpufreq governor designed specifically for interactive mo-
bile applications [4]. In most Android smartphones, it is the
default CPU governor. In our system, the interactive
governor samples CPU utilization every 80 ms, and maxi-
mizes the CPU frequency if the CPU utilization is above
85%. Once triggered, it stays at the maximum frequency
for at least 20 ms before re-evaluating the CPU utilization.

5. Ondemand-sched: It is the ondemand cpufreq gover-
nor [4] also commonly used in Android. It samples CPU
utilization every 100 ms and maximizes CPU frequency if
the CPU utilization is over 90% during the past sampling
period. It gradually decreases the frequency by 100 MHz
if the CPU utilization drops below 90%.

6.3. Prediction Model Accuracy

We validate our energy model against the real hardware mea-
surement using the experiment setup described in Sec. 2. The
energy model has an average error of 5.6%. Also, across all
applications the performance model has an average error < 1%.
Fig. 5 shows the model accuracy of Paper.js, which is represen-
tative of the median accuracy across all the applications. Both
models are accurate enough to allow the event-based scheduler
to distinguish between different architecture configurations.
The accuracy justifies our simplification to trade off model
accuracy for prediction speed (Sec. 5.3). Because of space
limitations, we do not discuss the full data.

Performance model recalibration happens when the model
mispredicts for more than four consecutive times. Across all
benchmarks, the Ember.js- and GWT-based todo list appli-
cations incur the “most” model recalibrations—only twice
over 600 event handler executions. Therefore, recalibration
overhead in our event-based scheduler is negligible.

80

60

40

20

0

M
ea

su
re

d
La

te
nc

y
(m

s)

806040200
Predicted Latency (ms)

 Big core
 Little core

(a) Latency model validation.

40

30

20

10

M
ea

su
re

d
En

er
gy

 (
m

J)

40302010
Predicted Energy (mJ)

(b) Energy model validation.

Fig. 5: The latency and energy model accuracy for Paper.js, which
has the median accuracy of all the applications.

6.4. Scheduling Scenarios

We evaluate various schedulers under two scheduling scenar-
ios: scheduling for imperceptibility (PI) and scheduling for
usability (PU). They characterize two important QoS experi-
ences: “imperceptible delay” and “just usable”. Let us now
describe the two scheduling scenarios and explain the rationale
of choosing them. Note that we use the PI and PU values listed
in Table 1 as the imperceptibility and usability QoS thresholds.
1. Scheduling for imperceptibility: With abundant energy,

or when the user expects high QoS, an eQoS-optimized
system needs to perform a task “barely” better than the
imperceptibility QoS threshold (PI) using the least energy.

2. Scheduling for usability: Under a tight energy budget, or
when the user QoS expectation is low, an eQoS-optimized
system needs to perform “barely” better than the usability
QoS threshold (PU) using the least amount of energy.

Imperceptibility We first compare the QoS violation and
energy consumption of EBS against other runtime schemes to
understand EBS’ behavior. We then use QPE to summarize
EBS’ benefit in achieving eQoS. Fig. 7a, Fig. 7b, and Fig. 7c
show the QoS violation, energy consumption, and QPE score
under different scheduling schemes, respectively. The QPE
scores are normalized to Oracle-sched. The EBS_Imp bars
correspond to the EBS when scheduling for imperceptibility.

When scheduling for imperceptibility, the event-based
scheduler provides nearly equivalent QoS satisfaction as Perf-
sched, which always provides the best performance to mini-
mize QoS violations. Fig. 7a shows that EBS consumes only
0.4% more QoS violation than Perf-sched. Meanwhile, Fig. 7b

100

80

60

40

20

0

Ti
m

e
D

is
tri

bu
tio

n
(%

)

Cam
an

JS Zlib

Cryp
to

Pdf.
js

Embe
r.js

GW
T
jQ

ue
ry

Bac
kb

on
e

Pap
er.

js
sin

a

go
og

le
eb

ay
Doo

m
Rain

A
15

A
7

GHz
1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4
 High Latency
 Low Intensity

 Low Latency
 Low Intensity

 Low Latency
 High Intensity

Fig. 6: The architecture configuration distribution of EBS scheduling
for imperceptibility. Darker colors indicate higher performance.

10
0

10
1

10
2

10
3

10
4

Q
oS

 V
io

la
tio

n
(%

)

6

4

2

0

30

20

10

0
CamanJS Zlib Crypto Pdf.js Ember.js GWT jQuery Backbone Paper.js sina google ebay Doom Rain

9.4 17.8 58.1 6.9 90.8 84.9

 High Latency
 Low Intensity

 Low Latency
 Low Intensity

Low Latency
High Intensity

EBS_Imp Perf Interactive Ondemand Energy

(a) QoS violations of different runtime schemes. Lower is better.

20

15

10

5

0

E
ne

rg
y

(J
)

4

3

2

1

0

0.10

0.08

0.06

0.04

0.02

0.00
CamanJS Zlib Crypto Pdf.js Ember.js GWT jQuery Backbone Paper.js sina google ebay Doom Rain

8.48.2 7.7

 High Latency
 Low Intensity

 Low Latency
 Low Intensity

Low Latency
High Intensity

EBS_Imp Perf Interactive Ondemand Energy

(b) Energy consumptions of different runtime schemes. Lower is better.

1.0

0.8

0.6

0.4

0.2

0.0

N
or

m
. Q

P
E

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
CamanJS Zlib Crypto Pdf.js Ember.js GWT jQuery Backbone Paper.js sina google ebay Doom Rain

0 0 0

 High Latency
 Low Intensity

 Low Latency
 Low Intensity

Low Latency
High Intensity

EBS_Imp Perf Interactive Ondemand Energy

(c) QPE scores of all the scheduling schemes. Higher is better.

Fig. 7: QoS violations, energy consumptions, and QPE scores of different scheduling schemes when scheduling for impercepbility.

shows that EBS achieves on average 41.2%, up to 72.4%, en-
ergy savings. To understand the sources of energy savings,
Fig. 6 illustrates the architecture configuration distribution
of EBS. Except high-latency, low-intensity applications (first
group), EBS extensively leverages the lower performance con-
figurations. This means that EBS can deliver near-optimal
QoS without always providing the highest performance, and
thus maintain a low-energy footprint. Accordingly, EBS sig-
nificantly improves the QPE over Perf-sched, as Fig. 7c shows.

EBS also significantly outperforms both of the OS gover-
nors. On average, EBS achieves 22.9% and 37.9% energy
savings over Ondemand-sched and Interactive-sched, respec-
tively, with about 0.1% more QoS violations. This is because
the OS schedulers tend to overprovision the CPU performance,
which is not needed by many applications. The most represen-
tative example is the low-latency, low-intensity applications
(second group). They incur about 80% CPU utilization. In
respond to the high CPU utilization, both Interactive-sched
and Ondemand-sched schedule the processor under the big
core with high frequency, effectively delivering similar per-
formance as Perf-sched. However, Fig. 6 shows that EBS can
identify the performance slack, and it schedules most of the

event handlers using the little core while still meeting PI . As a
result, Fig. 7c shows that EBS achieves a much higher QPE
score than Interactive-sched and Ondemand-sched.

Compared to Energy-sched, which minimizes energy con-
sumption without QoS guarantees, EBS reduces the QoS vio-
lations by 72.0%. For three of the high-latency, low-intensity
(first group) applications (CamanJS, Zlib, and Crypto), Energy-
sched even violates the usability threshold PU . Thus, although
Energy-sched consumes less energy for these applications,
their QPEs are zero as Fig. 7c shows, indicating that the under-
lying scheduler provides no user value. For other applications,
EBS either outperforms, or comes close to, Energy-sched.

Usability When scheduling for usability, i.e., meeting the
PU target using minimal energy, EBS achieves 55.4%, 52.9%,
and 41.4% energy savings over Perf-sched, Interactive-sched,
and Ondemend-sched, respectively, with nearly equivalent
QoS violations (< 0.1%). The energy savings are larger than
scheduling for imperceptibility (41.2%, 37.9%, and 22.9%
savings for the three schedulers, respectively). This is because
scheduling for PU requires lower performance than schedul-
ing for PI , and leaves more performance slack. Perf-sched,
Interactive-sched, and Ondemand-sched are agnostic to the

15

11

7

3

E
ne

rg
y

(m
J)

2015105
Event Handler Latency (ms)

 Imperceptiple

 Big core
 Little core

42.8%

(a) Energy consumption.

360

300

240

180

120

60

Q
P

E

2017141185
Event Handler Latency (ms)

 Imperceptiple

 Best QPE
 Best EDP

(b) QPE.

Fig. 8: Energy consumption and QPE of the Ember.js todo app.

36

30

24

18

12

Q
P

E

605040302010
FPS

 Tolerable Unusable

 Big Core
 Little Core

(a) Energy consumption.

30

24

18

12

6

0

Q
P

E

605040302010
FPS

 Tolerable

 Best
 EDP

 Best
 QPE

 Unusable

(b) QPE.

Fig. 9: Energy consumption and QPE of Rain.

QoS target. They can not effectively leverage the larger per-
formance slack, and incur more performance overprovision.
EBS, in contrast, can adapt to the changing performance re-
quirement by leveraging lower performance configurations
more frequently, and it consumes less energy. As compared to
Energy-sched, EBS reduces the QoS violation by about 50%.

6.5. EDP Optimization versus eQoS Scheduling

Although QPE is equivalent to EDP in the tolerable region due
to the linearity between QoS and performance, scheduling for
eQoS is different from simply optimizing for EDP. Intuitively,
this is because the best EDP configuration might be in the
unusable or imperceptible region. Therefore, an EDP-oriented
scheduler may lead to QoS violations or consume unnecessar-
ily high energy, defeating the purpose of eQoS optimization.

We further explain the distinction between EDP and eQoS
using the Ember.js-based todo list application and Rain. For
each application, we select a representative event that has the
median latency of all the event executions. Fig. 8b and Fig. 9b
present the QPE scores under different architecture configura-
tions for the selected event of the two applications, respectively.
The x-axis corresponds to the event handler latencies (or FPS
for Rain), and the y-axis corresponds to the QPE values.

For Ember.js, the best EDP configuration and best QPE
configuration (i.e., the best eQoS-optimized configuration) do
not match. This is because all the configurations achieve the
imperceptible QoS experience. Because the QoS score in the
imperceptible region is 1, the best QPE is achieved when the
energy, instead of EDP, is minimized. Scheduling for the best
EDP would select a higher performance configuration and

consumes more energy without improving user-perceptible
QoS. For Rain, the best EDP and QPE configuration do not
match either. This is because the best EDP configuration
does not provide enough performance to make the application
usable. Therefore, the QoS score and the QPE result are zero.

6.6. Big/Little Architecture Effect

Our results indicate that a big/little heterogeneous architecture
is beneficial for eQoS optimizations. Having only a big (or lit-
tle) core reduces the optimization opportunity. For low-latency,
low-intensity applications (second group), they benefit from
having a little core. This is because a little core can already
achieve an imperceptible QoS experience for most of the event
executions while saving significant energy compared to a big
core. For example, Fig. 8a shows the energy consumption and
event latency of Ember.js under various architecture configu-
rations. Even the weakest little core performance meets the
imperceptible QoS target. Using the little core in this case
saves at least 42.8% energy over the big core. Fig. 7c further
confirms that EBS spends over 90% of the execution time on
the little core for the second group applications.

In contrast, applications in the first and third group benefit
from having a big core. This is because a little core fails to
deliver an imperceptible QoS experience. For example, Fig. 9a
shows the energy consumption and FPS of Rain under various
architecture configurations. All of the little core configurations
fail to achieve a tolerable QoS (30 FPS), eventually wasting
energy upon service abandonment. Fig. 6 further shows that
EBS leverages various frequency settings from the big core
for first- and third-group applications.

7. Related Work
(e)QoS in Computer Architecture QoS has long been an
important topic in computer architecture research. It has been
applied to multicore memory schedulers and datacenters, in
which QoS is typically manifested as fairness [75] and service-
level agreements (SLA) [59], respectively. Our work focuses
on QoS in the interactive mobile domain [56, 71], in which
our contribution is to characterize the relationship between
QoS and energy efficiency, and propose the term eQoS that
captures the trade-off between QoS and energy consumption.

QoS-Oriented Energy Optimization Techniques for trad-
ing QoS for energy efficiency fall into two major categories:
approximation and performance relaxation. Approximation
techniques trade off precision for energy consumption (perfor-
mance), such as applying inexact image filters [83].

Our event-based scheduling utilizes performance relaxation
techniques that do not sacrifice precision, but exploit the gap
between human perception and processor performance. It
advances the existing performance slacking techniques in the
interactive/mobile space in two key ways. First, traditional
performance slacking techniques partition the QoS spectrum
into either totally imperceptible or totally unusable. Such
simplification does not consider the tolerable QoS in realistic

user experience [77, 85]. Our event-based scheduling allows
exploiting the performance-energy trade-off in the tolerable
region, more accurately reflecting the real user experience,
and increases the energy optimization opportunities.

Second, the event-based scheduling framework does not
rely on each application specifying the QoS requirements;
rather, it automatically detects them based on the fundamental
application event-level characteristics. As such, the scheduling
framework is generally applicable to interactive mobile Web
applications, rather than prior art that individually focuses on
one application domain at a time, such as FPS applications [62,
93], and responsive latency applications [52, 60, 95].

Timer coalescing [51] used in OS X Mavericks also ex-
ploits the performance slack for energy savings, similar to our
event-based scheduling. It postpones noncritical timers and
coalesces them for batch executions to increase the proces-
sor idle time for energy savings. However, timer coalescing
applies only to timers in Apple’s native applications (or OS
processes), whereas our EBS framework is not limited to timer
events, but can apply to any event-driven applications.

Single-ISA/DVFS Scheduling The event-based schedul-
ing differs from existing single-ISA scheduling and DVFS
techniques in two key aspects: scheduling unit and scheduling
objective. First, the scheduling unit in existing techniques is ei-
ther interval based (fixed-instruction interval [70,72,73,78,81]
or fixed-time interval [57, 65, 79, 88, 89]) or a code seg-
ment (e.g., critical sections, lagging threads, application ker-
nels [54, 68, 69, 87]). The scheduling unit in the event-based
scheduling is the event handler in interactive mobile Web ap-
plications. Event handlers correspond to user interactions and
let us directly optimize for user QoS experience.

The scheduling objectives in existing techniques are typi-
cally architecture-level energy-efficiency metrics such as en-
ergy, EDP [64], and million-instructions-per-joule (MIPJ) [89].
These metrics trade off raw performance instead of QoS with
energy. Therefore, they may lead to executions that fall into
the imperceptible or unusable QoS regions and waste energy.
On the contrary, the event-based scheduler explicitly considers
the PI and PU constraint in order to guarantee satisfactory QoS
experience. In addition, we also propose a metric called QPE,
which could be directly used as a scheduling objective for
trading off QoS with energy consumption.

Mobile Workload Suites and Characterization Our
study on interactive applications is driven by understanding
application QoS requirements from an application events per-
spective, which is not the focus in the majority of existing
work [38–45, 67, 80, 82]. Other benchmarks consider only a
particular form of QoS. For example, BBench [66] considers
the webpage load time as the QoS constraint for Web browsing;
the Web latency benchmark [46] considers the event latency
of user actions to webpage elements; the GFXBench [47] and
BaseMark [48] benchmarks consider FPS. However, our work-
load characterization efforts lead to a general methodology to
identify QoS constraints of a wide range of applications.

8. Conclusion
Mobile system designs today must meet two conflicting goals:
achieving energy efficiency and delivering satisfactory user
QoS experience. In this paper, we propose eQoS, which
serves as a general framework for reasoning about the energy-
efficiency trade-off in interactive mobile Web applications.
We show that by understanding the trade-off between user
QoS experience, performance, and energy consumption, and
leveraging the inherent event-driven execution model of inter-
active mobile Web applications, we can achieve satisfactory
end-user QoS experience while avoiding always provisioning
the highest performance through a novel event-based sched-
uler. We demonstrate a working prototype using the Google
Chromium and V8 framework on a Samsung Exynos 5410
SoC. Real hardware and software measurements show that the
event-based scheduling optimizing for eQoS achieves 41.2%
energy saving with only 0.4% of perceptible QoS violations.

Acknowledgments
We are thankful to our colleagues in industry and academia,
as well as anonymous reviewers for the many comments that
have contributed to this work. This work is supported by Intel
Corporation, AMD Corporation, Samsung, and Google. Any
opinions expressed in this material are those of the authors
and do not necessarily reflect the views of the sponsors.

References
[1] Battery Statistics. http://batteryuniversity.com/learn/article/battery_

statistics
[2] Size matters for connected devices. http://goo.gl/Mcocet
[3] Kissmetrics: “How loading time affects your bottom line”.

https://blog.kissmetrics.com/loading-time/
[4] Android CPUFreq Governors. http://goo.gl/Mlr9U1
[5] Chromium browser. http://www.chromium.org/Home
[6] Ordroid XU+E Development Board. http://hardkernel.com/main/

products/prdt_info.php?g_code=G137463363079
[7] Exploring the Design of the Cortex-A15 Processor. http://www.arm.

com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
[8] Enabling Mobile Innovation with the Cortex-A7 Pro-

cessor. http://www.arm.com/files/downloads/Enabling_Embedded_
Innovation_with_the_Cortex-A7_Processor.pdf

[9] Performance Profiling with the Timeline. https://developers.google.
com/chrome-developer-tools/docs/timeline#frames_mode

[10] V8 Profiler. http://code.google.com/p/v8/wiki/V8Profiler
[11] Browsing Without Plug-ins. http://blogs.msdn.com/b/ie/archive/2011/

08/31/browsing-without-plug-ins.aspx
[12] Pdf.js. http://mozilla.github.io/pdf.js/
[13] How Fast is PDF.js. http://goo.gl/b1bfVL
[14] Pdf.js demo. http://mozilla.github.io/pdf.js/web/viewer.html
[15] CamanJS. http://camanjs.com/
[16] Google Enables Data Compression for Chrome in Android and iOS.

http://goo.gl/qR03iV
[17] Zlib Data Compression Library. https://github.com/kripken/emscripten/

tree/master/tests/zlib
[18] The Average Web Page is Now 1 MB. http://goo.gl/Q0xLxl
[19] RSA and ECC in JavaScript. http://www-cs-students.stanford.edu/

~tjw/jsbn/
[20] Paper.js. http://paperjs.org/
[21] Scriptographer. http://scriptographer.org/
[22] Speed is a Killer. http://blog.kissmetrics.com/speed-is-a-killer
[23] Steve Burbeck, Applications programming in Smalltalk-80 (TM): How

to use Model-View-Controller (MVC). http://st-www.cs.illinois.edu/
users/smarch/st-docs/mvc.html

http://batteryuniversity.com/learn/article/battery_statistics
http://batteryuniversity.com/learn/article/battery_statistics
http://goo.gl/Mcocet
https://blog.kissmetrics.com/loading-time/
http://goo.gl/Mlr9U1
http://www.chromium.org/Home
http://hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
http://hardkernel.com/main/products/prdt_info.php?g_code=G137463363079
http://www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
http://www.arm.com/files/pdf/at-exploring_the_design_of_the_cortex-a15.pdf
http://www.arm.com/files/downloads/Enabling_Embedded_Innovation_with_the_Cortex-A7_Processor.pdf
http://www.arm.com/files/downloads/Enabling_Embedded_Innovation_with_the_Cortex-A7_Processor.pdf
https://developers.google.com/chrome-developer-tools/docs/timeline#frames_mode
https://developers.google.com/chrome-developer-tools/docs/timeline#frames_mode
http://code.google.com/p/v8/wiki/V8Profiler
http://blogs.msdn.com/b/ie/archive/2011/08/31/browsing-without-plug-ins.aspx
http://blogs.msdn.com/b/ie/archive/2011/08/31/browsing-without-plug-ins.aspx
http://mozilla.github.io/pdf.js/
http://goo.gl/b1bfVL
http://mozilla.github.io/pdf.js/web/viewer.html
http://camanjs.com/
http://goo.gl/qR03iV
https://github.com/kripken/emscripten/tree/master/tests/zlib
https://github.com/kripken/emscripten/tree/master/tests/zlib
http://goo.gl/Q0xLxl
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://www-cs-students.stanford.edu/~tjw/jsbn/
http://paperjs.org/
http://scriptographer.org/
http://blog.kissmetrics.com/speed-is-a-killer
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html

[24] TodoMVC. http://todomvc.com/
[25] Backbone.js Todo List. http://todomvc.com/architecture-examples/

backbone/
[26] Emberjs.js Todo List. http://todomvc.com/architecture-examples/

emberjs/
[27] Gwt Todo List. http://todomvc.com/architecture-examples/gwt/
[28] Jquery Todo List. http://todomvc.com/architecture-examples/jquery/
[29] Delivering the sub one second rendering experience. http://developers.

google.com/speed/docs/insights/mobile
[30] Timers specification. http://goo.gl/hU9pI1
[31] HTML Event Types. http://www.w3.org/TR/DOM-Level-2-Events/

events.html#Events-eventgroupings-htmlevents
[32] W3C: Timing Control for Script-based Animations. http://www.w3.

org/TR/animation-timing/
[33] Web Graphics Trends in 2013. http://www.html5canvastutorials.com/

articles/web-graphics-trends-in-2013/
[34] Doom. http://kripken.github.io/boon/boon.html
[35] Rain Simulation. sheepeuh.com/rain
[36] Chrome Experiment. http://www.chromeexperiments.com/
[37] Power Profiles for Android. https://source.android.com/devices/tech/

power.html#
[38] Browsing Bench. http://www.eembc.org/benchmark/browsing_sl.php
[39] BrowserMark Benchmark. http://browsermark.rightware.com/
[40] Vellamo Benchmark. http://www.quicinc.com/vellamo/
[41] AnTuTu Benchmark. http://www.antutulabs.com/downloads.html
[42] SunSpider JavaScript Benchmark. https://www.webkit.org/perf/

sunspider/sunspider.html
[43] Octane Benchmark. https://developers.google.com/octane/benchmark
[44] Kraken Benchmark 1.1. http://krakenbenchmark.mozilla.org/
[45] GeekBench 3.0 Benchmark. http://www.primatelabs.com/geekbench/
[46] Web Latency Benchmark. http://google.github.io/latency-benchmark/
[47] GFXBench Benchmark. https://gfxbench.com/result.jsp
[48] BaseMark X. http://www.rightware.com/consumer/basemark-x/
[49] “System Software for ARM big.LITTLE Systems,” in ARM Whiltepa-

per, 2011.
[50] “big.LITTLE Processing with ARM Cortex-A15 & Cortex-A7,” in

ARM Whiltepaper, 2013.
[51] Apple, power Efficiency in OS X. https://www.apple.com/media/us/

osx/2013/docs/OSX_Power_Efficiency_Technology_Overview.pdf
[52] M. Bi, I. Crk, and C. Gniady, “IADVS: On-demand Performance for

Interactive Applications,” in Proc. of HPCA, 2010.
[53] K. Brownlow, “Silent Films: What was the Right Speed?” Sight &

Sound, 1980.
[54] T. Cao, T. Gao, S. M. Blackburn, and K. S. McKinley, “The Yin

and Yang of Power and Performance for Asymmetric Hardware and
Managed Software,” in Proc. of ISCA, 2012.

[55] S. K. Card, G. G. Robertson, and J. D. Mackinlay, “The Information
Visualizer: An Information Workspace,” in Proc. of CHI, 1991.

[56] M. Claypool, K. Claypool, and F. Damaa, “The Effects of Frame Rate
and Resolution on Users Playing First Person Shooter Games,” in
Multimedia Computing and Networking, 2006.

[57] K. V. Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer,
“Scheduling Heterogeneous Multi-Cores through Performance Impact
Estimation (PIE),” in Proc. of ISCA, 2012.

[58] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanaa, and C. Le, “RAPL:
Memory Power Estimation and Capping,” in Proc. of ISLPED, 2010.

[59] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels, “Dynamo:
Amazon’s Highly Available Key-Value Store,” in Proc. of SOSP, 2007.

[60] Y. Endo, Z. Wang, J. Chen, and M. Seltzer, “Using Latency to Evaluate
Interactive System Performance,” in Proc. of OSDI, 1996.

[61] M. Fiedler, T. Hossfeld, and P. Tran-Gia, “A Generic Quantitative
Relationship between Quality of Experience and Quality of Service,”
in IEEE Network, 2010.

[62] K. Flautner and T. Mudge, “Vertigo: Automatic Performance-Setting
for Linux,” in Proc. of OSDI, 2002.

[63] H. Fuchs, Z. M. Kedem, and B. F. Naylor, “On Visible Surface Genera-
tion by a priori Tree Structures,” in Proc. of SIGGRAPH, 1980.

[64] R. Gonzalez and M. Horowitz, “Energy Dissipation in General Purpose
Microprocessors,” in IEEE Journal of Solid-State Circuits, 1996.

[65] D. Grunwald, P. Levis, K. Farkas, C. M. III, and M. Neufeld, “Policies
for Dynamic Clock Scheduling,” in Proc. of OSDI, 2000.

[66] A. Gutierrez, R. Dreslinski, A. Saidi, C. Emmons, N. Paver, T. Wenisch,
and T. Mudge, “Full-System Analysis and Characterization of Interac-
tive Smartphone Applications,” in Proc. of IISWC, 2011.

[67] Y. Huang, Z. Zha, M. Chen, and L. Zhang, “Moby: A Mobile Bench-
mark Suite for Architectural Simulators,” 2014.

[68] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt, “Bottleneck
Identification and Scheduling in Multithreaded Applications,” in Proc.
of ASPLOS, 2012.

[69] ——, “Utility-Based Acceleration of Multithreaded Applications on
Asymmetric CMPs,” in Proc. of ISCA, 2013.

[70] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen,
“Single-ISA Heterogeneous Multi-Core Architectures: The Potential
for Processor Power Reduction,” in Proc. of MICRO, 2003.

[71] G. Lindgaard, G. Fernandes, C. Dudek, and J. Brown, “Attention web
designers: You have 50 milliseconds to make a good first impression!”
in Behaviour & information technology, 2006.

[72] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman, R. Dreslinski, T. F.
Wenisch, and S. Mahlke, “Composite Cores: Pushing Heterogeneity
into a Core,” in Proc. of MICRO, 2012.

[73] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt, “Predicting Perfor-
mance Impact of DVFS for Realistic Memory Systems,” in Proc. of
MICRO, 2012.

[74] R. B. Miller, “Response Time in Man-Computer Conversational Trans-
actions,” in Proc. of AFIPS Fall Joint Computer Conference, 1968.

[75] O. Mutlu and T. Moscibroda, “Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors,” in Proc. of MICRO, 2007.

[76] B. A. Myers, “The Importance of Percent-Done Progress Indicators for
Computer-Human Interfaces,” in Proc. of CHI, 1985.

[77] J. Nielsen, Usability Engineering. Morgan Kaufmann, 1993.
[78] S. Padmanabha, A. Lukefahr, R. Das, and S. Mahlke, “Trace Based

Phase Prediction For Tightly-Coupled Heterogeneous Cores,” in Proc.
of MICRO, 2013.

[79] V. Pallipadi and A. Starikovskiy, “The Ondemand Governor: Past,
Present, and Future,” in Proc. of Linux Symposium, 2006.

[80] D. Pandiyan, S.-Y. Lee, and C.-J. Wu, “Performance, Energy Char-
acterizations and Architectural Implications of an Emerging Mobile
Platform Benchmark Suite-MobileBench,” in Proc. of IISWC, 2013.

[81] K. K. Rangan, G.-Y. Wei, and D. Brooks, “Thread Motion: Fine-
Grained Power Management for Multi-Core Systems,” in Proc. of
ISCA, 2009.

[82] G. Richards, A. Gal, B. Eich, and J. Vitek, “Automated Construction
of JavaScript Benchmarks,” in Proc. of OOPSLA, 2011.

[83] M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke, “SAGE:
Self-Tuning Approximation for Graphics Engines,” in Proc. of MICRO,
2013.

[84] F. Schlachter, “No Moore’s Law for Batteries,” in Proc. of National
Academy of Science of the United States of America, 2013.

[85] B. Shneiderman, Designing the User Interface. Addison-Wesley,
1992.

[86] M. D. Smith, “Overcoming the Challenges to Feedback-Directed Opti-
mization (Keynote Talk),” in Proc. of DYNAMO, 2000.

[87] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. patt, “Accelerating
Critical Section Execution with Asymmetric Multi-Core Architectures,”
in Proc. of ASPLOS, 2009.

[88] P.-H. Tseng, P.-C. Hsiu, C.-C. Pan, and T.-W. Kuo, “User-Centric
Energy-Efficient Scheduling on Multi-Core Mobile Devices,” in Proc.
of DAC, 2014.

[89] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for
Reduced CPU energy,” in Proc. of OSDI, 1994.

[90] Q. Wu, V. Reddi, Y. Wu, J. Lee, D. Connors, D. Brooks, M. Martonosi,
and D. W. Clark, “A Dynamic Compilation Framework for Controlling
Microprocessor Energy and Performance,” in Proc. of MICRO, 2005.

[91] F. Xie, M. Martonosi, and S. Malik, “Compile-Time Dynamic Voltage
Scaling Settings: Opportunities and Limits,” in Proc. of PLDI, 2003.

[92] Y. Xu, M. Lin, H. Lu, G. Cardone, N. D. Lane, Z. Chen, A. T. Campbell,
and T. Choudhury, “Preference, Context and Communities: A Multi-
faceted Approach to Predicting Smartphone App Usage Patterns,” in
Proc. of ISWC, 2013.

[93] L. Yang, R. P. Dick, G. Memik, and P. Dinda, “HAPPE: Human and
Application-Driven Frequency Scaling for Processor Power Efficiency,”
Mobile Computing, IEEE Transactions on, 2013.

[94] Z. Zhao, M. Zhou, and X. Shen, “SatScore: Uncovering and Avoiding
a Principled Pitfall in Responsiveness Measurements of App Launches,”
in Proc. of UbiComp, 2014.

[95] Y. Zhu and V. J. Reddi, “High-Performance and Energy-Efficient Mo-
bile Web Browsing on Big/Little Systems,” in Proc. of HPCA, 2013.

[96] ——, “WebCore: Architectural Support for Mobile Web Browsing,” in
Proc. of ISCA, 2014.

http://todomvc.com/
http://todomvc.com/architecture-examples/backbone/
http://todomvc.com/architecture-examples/backbone/
http://todomvc.com/architecture-examples/emberjs/
http://todomvc.com/architecture-examples/emberjs/
http://todomvc.com/architecture-examples/gwt/
http://todomvc.com/architecture-examples/jquery/
http://developers.google.com/speed/docs/insights/mobile
http://developers.google.com/speed/docs/insights/mobile
http://goo.gl/hU9pI1
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/DOM-Level-2-Events/events.html#Events-eventgroupings-htmlevents
http://www.w3.org/TR/animation-timing/
http://www.w3.org/TR/animation-timing/
http://www.html5canvastutorials.com/articles/web-graphics-trends-in-2013/
http://www.html5canvastutorials.com/articles/web-graphics-trends-in-2013/
http://kripken.github.io/boon/boon.html
sheepeuh.com/rain
http://www.chromeexperiments.com/
https://source.android.com/devices/tech/power.html#
https://source.android.com/devices/tech/power.html#
http://www.eembc.org/benchmark/browsing_sl.php
http://browsermark.rightware.com/
http://www.quicinc.com/vellamo/
http://www.antutulabs.com/downloads.html
https://www.webkit.org/perf/sunspider/sunspider.html
https://www.webkit.org/perf/sunspider/sunspider.html
https://developers.google.com/octane/benchmark
http://krakenbenchmark.mozilla.org/
http://www.primatelabs.com/geekbench/
http://google.github.io/latency-benchmark/
https://gfxbench.com/result.jsp
http://www.rightware.com/consumer/basemark-x/
https://www.apple.com/media/us/osx/2013/docs/OSX_Power_Efficiency_Technology_Overview.pdf
https://www.apple.com/media/us/osx/2013/docs/OSX_Power_Efficiency_Technology_Overview.pdf

	Introduction
	Experimental Setup
	eQoS: Trade-off Between QoS and Energy
	QoS in Mobile Web Applications
	Application Event Characteristics
	Event Imperceptibility (PI) and Usability (PU) Values
	Low Event-Intensity, High Event-Latency
	Low Event-Intensity, Low Event-Latency
	High Event-Intensity, Low Event-Latency

	Summary

	Event-Based Scheduling
	Scheduling Unit
	Scheduler Design Overview
	Scheduler Implementation Details

	Evaluation
	Metrics for Evaluating Event-Based Scheduling
	Baseline Schedulers
	Prediction Model Accuracy
	Scheduling Scenarios
	EDP Optimization versus eQoS Scheduling
	Big/Little Architecture Effect

	Related Work
	Conclusion

