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THE ROLE OF THE CPU IN ENERGY-
EFFICIENT MOBILE WEB BROWSING

.................................................................................................................................................................................................................

THE MOBILE CPU IS STARTING TO NOTICEABLY IMPACT WEB BROWSING PERFORMANCE

AND ENERGY CONSUMPTION. ACHIEVING ENERGY-EFFICIENT MOBILE WEB BROWSING

REQUIRES CONSIDERING BOTH CPU AND NETWORK CAPABILITIES. RESEARCHERS MUST

LEVERAGE INTERACTIONS BETWEEN THE CPU AND NETWORK TO DELIVER HIGH MOBILE

WEB PERFORMANCE WHILE MAINTAINING A LOW ENERGY FOOTPRINT. DESIGNING FUTURE

HIGH-PERFORMANCE AND ENERGY-EFFICIENT MOBILE WEB CLIENTS IMPLIES LOOKING

BEYOND INDIVIDUAL COMPONENTS AND TAKING A FULL SYSTEM PERSPECTIVE.

......Web technologies have trans-
formed society, shaping how we think, com-
municate, and innovate. Recently, the Web
has entered a new age that automatically rec-
ognizes, mines, and synthesizes user-specific
information. The driving force behind this
Web evolution is the ubiquity of mobile devi-
ces—today’s most pervasive personal com-
puting platform. The integration of mobile
and Web enables strong connectivity, interac-
tivity, and personalization, and is the focus of
this article.

Mobile Web performance has significantly
improved over the past several years. We
demonstrate this improvement over six
smartphone generations, each representing a
top smartphone from 2009 to 2014. (See the
next section for details.) Each smartphone
runs the Google Chrome browser (version
33.0) downloaded from Google Play, and
loads eight hot websites from the year corre-
sponding to the device, which we obtained
from Internet Archive (http://archive.org
/web/web.php) as a representative Web snap-
shot of that year. Figure 1a shows the average

webpage load time on the y-axis. Overall,
webpage load time has improved from
almost 40 seconds in 2009 to less than 5 sec-
onds in 2014, which is effectively an 8�
improvement in performance.

However, generational performance
improvements began to slow down. Figure
1a shows that after 2011, the webpage load
time improved only marginally. Meanwhile,
smartphone power consumption has contin-
ued to steadily increase. Figure 1b shows the
average device power consumption of the six
smartphones, measured at the battery rail,
while loading the webpages. We observe a
3� power increase over the past six years.
The marginal performance improvement
coupled with the steady increase in power
consumption has resulted in the slowing
down of energy consumption improvement.
Figure 1a shows that the energy reduction
plateaued out beyond 2011.

In this article, we answer the following
question: what is the role of the mobile CPU
in enabling energy-efficient Web browsing?
We examine the two critical components that
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affect the energy efficiency of mobile Web
browsing: the CPU and the network. Con-
ventional wisdom suggests that network
capability is the primary bottleneck in mobile
Web browsing. A great portion of the
research has focused on improving the net-
work,1-3 but little work has been done on
understanding how the CPU impacts mobile
Web browsing.

We find that the CPU’s impact on
mobile Web browsing energy efficiency
strongly depends on the network latency.
Under low network latency, such as in an
LTE cellular network, the best system energy
efficiency is achieved under high CPU per-
formance, which leads to significantly faster
webpage load time while simultaneously
conserving energy. In contrast, under an
adverse connectivity with high network
latency (for example, 3G), the webpage load
time is insensitive to the CPU performance.
Low CPU performance makes the system
energy efficient by significantly saving energy
without degrading Web browsing perfor-
mance.

From these observations, we quantita-
tively demonstrate that existing dynamic
voltage and frequency scaling (DVFS) gover-
nors in the OS are inadequate in deciding the
CPU performance, because they do not con-
sider the network latency, and therefore often
lead to suboptimal energy-efficiency operat-
ing points. We describe a CPU-network

interaction-based approach to adjust the
CPU’s voltage and frequency setting accord-
ing to the operating network latency. Our
findings suggest that designing future high-
performance mobile Web browsers will
require us to look beyond optimizing indi-
vidual resource components and take an inte-
grated full-system perspective.

Considering the past and present
Our study takes a historical perspective to

understand Web performance trends, bottle-
necks, and energy implications. Here, we
introduce our investigative methodology for
conducting such a study with representative
smartphone and Web technology snapshots.

Smartphones
To study evolving CPU performance, we

selected six top smartphones, each represent-
ing cutting-edge smartphone technologies
for each year from 2009 to 2014. These are
Motorola’s Droid from 2009, and Samsung’s
Galaxy S, Nexus, and S3, S4, and S5 from
2010 through 2014, respectively. Each
smartphone houses a CPU that differs in
microarchitectural design, peak clock fre-
quency, and number of cores. Chronologi-
cally, the six phones reflect how CPU
processing capabilities have progressed over
time. We used the Monsoon power monitor
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Figure 1. Average performance, power, and energy consumption trends from 2009 to 2014

for eight of the top websites, ranked according to Alexa. We pick one of the best-performing

smartphones from each year to load all of the eight webpages’ archived images from Internet

Archive. (a) Performance and energy trend. (b) Power trend.
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to measure the six smartphones’ battery-level
energy consumption.

Network
Network performance is typically eval-

uated in two metrics: latency and bandwidth.
Prior work has shown that in the mobile con-
text, network latency—typically evaluated by
round-trip time (RTT)—has a much more
significant impact than network band-
width.1,4 Therefore, we focused only on the
latency aspect of network performance.

To study the impact of network latency
on various cellular network generations, we
hosted all the webpages on a Web server and
manually injected delay into the server. We
then used Wi-Fi on the smartphones to
access the webpages. Because Wi-Fi has sig-
nificantly lower latency than the current 4G/
LTE network, the delay injection let us
mimic a wide range of network latencies.
This methodology is a well-established tech-
nique to control cellular network latency.4

Although Wi-Fi has different behaviors com-
pared to the cellular network,2 our study
focuses on network latency in general, rather
than specific mobile network technologies.

Workloads
We carefully selected webpages that repre-

sent the evolution of the Web workloads. In
particular, we used the webpage snapshots
from Internet Archive to represent webpage
evolution throughout the years. We mined
through the top 10,000 websites as ranked by
Alexa (www.alexa.com) and identified eight
representative websites. Prior work has used
these eight websites,5 and they were statisti-
cally shown as representative. The eight web-
sites are hot landing websites ranked among
Alexa’s top 40. They are CNN, Amazon,
ESPN, Google, YouTube, 163, MSN, and
Slashdot.

We considered not only the mobile ver-
sion of the eight websites, but also their desk-
top counterparts, because many mobile users
still prefer desktop-version websites for their
richer content and experience. Moreover,
many mobile devices, especially tablets, typi-
cally load the webpage’s desktop version by
default. As webpage sizes keep increasing, we
must understand the performance and energy

implications of complex webpages and not
just simple mobile webpages.

The CPU’s impact on mobile Web
performance

Conventional wisdom suggests that
mobile Web browsing performance is pri-
marily limited by the network latency. In this
section, we explain how the CPU impacts
mobile Web browsing performance. We first
perform a bottleneck analysis between the
CPU and the network to show that webpage
load time is sensitive to CPU performance
under low network latency, such as the cur-
rent LTE cellular technology. We then per-
form a combined study, varying both
network latency and CPU performance
simultaneously, to understand how mobile
Web browsing performance is affected by
CPU performance under different network
latencies.

CPU versus network bottleneck analysis
To understand how the CPU and network

impact the mobile Web browsing perform-
ance, we must first understand the mecha-
nism of how browsers load webpages
through the interaction of CPU computation
and network access. Modern browsers, such
as Chrome and Firefox, use an asynchronous
execution model between CPU and network
access.4,6 CPU computation and network
access are overlapped for performance opti-
mizations. For example, the CPU doesn’t
wait for the network to return an image file;
instead, it continues to process the rest of the
webpage that is independent of the image.
Such an asynchronous execution model
implies that improving the performance of
only one component will eventually make
the workload bounded by the other
component.

With this understanding, we now quan-
tify the impact of the CPU and network on
the webpage load time. We experimentally
compare how the webpage load time varies
with different CPU performances and net-
work latencies on today’s high-end Galaxy
S5. We use the delay injection technique
described earlier to statically hold the net-
work latency at 100 ms (a typical RTT in an
LTE network) while investigating the CPU,
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and hold the CPU performance at its highest
frequency while studying the network, to iso-
late each component’s effect.

We first focus on the network. Figure 2
shows the webpage load time with respect to
different network latencies. We superimpose
the figure with different mobile network
technologies’ typical latencies derived from
both technical specifications as well as real
measurements in the field.1,7 We observe
that reducing the network latency from an
adverse 3G connection at 2,000 ms to an
LTE connection at 100 ms results in a 9.5�
speedup in webpage load time from 38 to 4
seconds. As the network latency further
improves within the range of LTE network
latency (50 � 100 ms), the network latency
has only a marginal impact on the overall
webpage load time. This is because at this
point the fast network accesses are hidden
behind CPU computations in the asynchro-
nous execution model; the application is
largely CPU-bound. Further reducing the
network latency from LTE to Wi-Fi has
almost no effect.

As the network latency becomes low (that
is, small network RTT times), the CPU per-
formance starts playing a significant role in
the mobile Web browsing performance. To
study how the CPU performance affects the
webpage load time, we mimic a wide range
of CPU performance capabilities by leverag-
ing the S5’s 14 frequency settings. Note that
we use frequency only as a proxy for CPU
performance; we do not intend to study the
impact of a particular CPU’s frequency itself.
Figure 3 shows how webpage load time
changes with CPU performance under a
100-ms RTT (LTE-like network connectiv-
ity). As the CPU frequency decreases from
the highest to the lowest by about 6� (2.5 to
0.4 GHz), the webpage load time slows
down by as much as 4.5�, from 4 seconds to
about 18 seconds, indicating strong sensitiv-
ity to CPU performance.

An increase in the clock frequency
between 1.6 and 2.4 GHz yields small per-
formance benefits. One could then naively
conclude that mobile CPU performance
improvements yield marginal improvements
in Web browsing performance. However, the
marginal improvement is merely an artifact
of using frequency as a performance proxy.

At high frequencies, the processor’s pipeline
is already saturated with work, and the mem-
ory and interconnection become the micro-
architectural-level bottlenecks.8

To overcome this artificial constraint, we
perform the same experiment on a desktop
CPU (Intel core i5 at 1.2 GHz) and assess
the impact of future mobile CPU improve-
ments on Web browsing performance. The
average webpage load time on the desktop
CPU is about 1 second, effectively a 4�
speedup over the S5’s peak performance.
Mobile CPU performance today is still far
from reaching a diminishing return point,
and it can continue to have a significant
impact on mobile Web browsing perfor-
mance.

To attest to the fact that CPU perform-
ance has consistently contributed to overall
mobile Web browsing performance improve-
ment, we also take an evolutionary perspec-
tive and compare the five earlier smartphones
released from 2009 to 2013 with the S5,
which came out in 2014. Each of the earlier
smartphones possesses a peak performance
equivalent to a certain S5 frequency. For
example, the S has a peak frequency of
1 GHz, whose performance is equivalent to
the S5 at about 650 MHz. We superimpose
the webpage load time and the equivalent
S5’s frequency of earlier smartphones in
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Figure 2. Average webpage load times with respect to changing network

latency. Each marker corresponds to a round-trip time (RTT) value. We
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Figure 3. Comparing the peak performance
of the Motorola Droid from 2009 and the S5
from 2014, six years of CPU innovation can
decrease the webpage load time by 6�, from
more than 24 seconds to 4 seconds.

The takeaway from our observations is
that the continuous improvement to network

latency will eventually take us to a point
where further Web performance improve-
ment will be unattainable without improving
CPU performance. We are not suggesting
that network latency is no longer relevant.
Instead, our data leads us to conclude that
under low network-latency conditions, the
CPU plays a vital role in mobile Web brows-
ing performance. When the network deviates
from an ideal low-latency network condition,
high-latency network access is prevalent, and
under such circumstances mobile Web per-
formance is indeed constrained by network
performance.

CPU–network interaction
Having identified the CPU’s impact on

mobile Web performance at a low network-
latency range, we must also understand how
that impact changes under various network
latencies. This is because network-latency var-
iation in the real world is large.9 For example,
field measurements show that network latency
can be anywhere between 100 ms to more
than 20 seconds in a 3G network depending
on the time of day and the location.10 The
difference across mobile carriers exacerbates
the latency variation issue even further. Here,
we show that the network latency can strongly
affect the mobile CPU’s impact on the Web
browsing performance. Such an interaction
between CPU and network casts strong
energy-efficiency implications.

We use Figure 4 to show how network
latency affects the CPU’s impact on webpage
load time. We continue to use the Galaxy S5
with Wi-Fi for our experiments and man-
ually inject delay into the Web server, as we
explained earlier. Each line represents a par-
ticular network latency, ranging from 10 to
2,000 ms. The y-axis shows the webpage load
time normalized to the best performance
(that is, using the highest frequency) of each
particular network latency.

When we compare the different RTT
trend lines, at higher network latency, the
corresponding line has a sharper curve, indi-
cating that the CPU performance has a larger
impact on webpage load time. For example,
at an adverse 3G network where the latency
is about 1,000 ms, loading the webpage at
the lowest frequency (0.4 GHz) leads to only
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a less than 2� slowdown as compared to run-
ning the highest performance (2.5 GHz).

In contrast, under a 100-ms latency, typi-
cal for LTE, the lowest frequency leads to
almost 4� slowdown in performance. On
the other hand, as network latency increases,
the corresponding curve becomes flatter,
indicating that webpage load time becomes
less sensitive to CPU performance. For
instance, Figure 4 shows that CPU perform-
ance has little impact on webpage load time
at a 2-second network latency.

The Mobile CPU’s energy-efficiency
implications

We study how the CPU impacts the
energy consumption of mobile Web brows-
ing, and how such an impact varies with dif-
ferent network latencies. Such interactions
between the CPU and network shed light on
energy-efficiency optimization opportunities.
On the basis of these observations, we
describe an approach to coordinate mobile
CPU performance with network latency to
optimize Web browsing energy efficiency
(that is, saving energy without compromising
performance). Our analysis, based on oracle
knowledge, suggests that such an approach
can provide better energy efficiency over

traditional OS DVFS governors that cur-
rently do not leverage the interplay between
the CPU and network.

Energy-efficiency optimization opportunities
Because the CPU’s impact on Web brows-

ing performance varies with different net-
work latencies, studying the CPU’s energy
consumption impact also requires us to con-
sider various network latencies. For simplicity
without loss of generality, we consider two
network scenarios: high network latency with
RTT of 2,000 ms, such as with adverse 3G
connectivity; and low network latency with
RTTof 100 ms, such as with good LTE cellu-
lar connectivity. Figures 5a and 5b show the
total device energy consumption against vari-
ous CPU frequencies under the two network
latencies, respectively. Within each network
latency, each empty marker represents a
CPU frequency that decreases from 2.5 to
0.4 GHz from left to right.

Under adverse network connectivity (such
as 2,000 ms latency), webpage load time is
extremely insensitive to CPU performance
(see Figure 4). Therefore, there is an opportu-
nity to exploit slack, meaning that during
slow network performance there is no need
for high CPU performance. We can lower
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the CPU’s operating frequency, and conse-
quently reduce the voltage, and thus reduce
device power consumption without causing
any noticeable performance impact. Figure
5a shows that using lower frequencies causes
little performance degradation compared to
the highest frequency, while achieving at
most 70 percent energy savings.

Under a well-behaved network (such as a
100-ms network latency), however, the web-
page load time is sensitive to CPU perform-
ance, as Figure 4 shows. As a result, Figure 5b
shows that using the highest frequency loads
the webpages about 4� faster and consumes
more than 20 percent less energy than using
the lowest frequency.

Our results indicate that the mobile CPU
casts two implications on Web browsing
energy efficiency. First, under high network
latency, lowering CPU performance is more
energy efficient for the overall system,
because lower CPU performance can achieve
significant energy savings with little perform-
ance degradation. Second, under low net-
work latency, provisioning high CPU
performance is more energy efficient for Web
browsing because it avoids excessively long
webpage load time and therefore consumes
less energy.

Current OS governors
Current mobile operating systems do not

consider network connectivity, and therefore
do not always choose the ideal CPU perform-
ance for energy management. We measure
the webpage load time and energy consump-
tion of two OS DVFS governors commonly
adopted in Android, performance and
ondemand, taken from the Android CPU-
Freq Governor (http://goo.gl/8pkyri), and
show the opportunity to improve them.
Comprehensively evaluating a new OS
DVFS governor is beyond the scope of this
article, especially because our focus is to char-
acterize the CPU’s role in enabling energy-
efficient mobile Web browsing.

The solid markers in Figures 5a and 5b
show the measured results of the two governors
under the network latency of 2,000 ms and
100 ms, respectively. The performance
governor statically sets the frequency to the
highest, and therefore guarantees applica-
tion interactivity. The Galaxy S5 uses the

performance governor by default. The
ondemand governor attempts to save energy
by changing the CPU frequency according to
CPU use. This governor is commonly adopted
for conserving energy.

Under high network latency, Figure 5a
shows that the performance governor
biases toward high CPU performance, con-
suming excessive energy without providing
much performance gain. Under low network
latency, Figure 5b shows that the ondemand
governor biases toward lower frequencies,
and therefore loads webpages 2� slower than
the highest frequency while consuming
slightly higher energy.

We see the feasibility of new heuristics for
future governor designs. For example, it is
possible to design a hierarchical governor
that first detects the network latency (RTT)
when the first network request comes back,
which typically takes less than 5 percent of
the webpage load time, and selects the
performance governor if the RTT is
below a certain threshold, or the ondemand
governor if the RTT is above the threshold. A
more complex approach is to train offline
models that predict the webpage load time
and energy consumption under various net-
work latencies,11 and at runtime select the
ideal frequency that minimizes the energy
consumption without exceeding a certain
load time threshold.

A lthough this article focuses on coordi-
nating CPU processing capability with

network performance, the general takeaway
is that similar coordinated optimization
opportunities can exist that extend beyond
the CPU and include other major mobile
components as well. Mobile systems on chips
(SoCs) offer several other computation
resources that can be adapted to network
connectivity. For instance, many heterogene-
ous SoCs (such as Samsung’s Exynos Octa)
contain little cores that have lower perform-
ance than main cores but consume less
energy. Loading webpages on the little core11

in observance of high network latency would
likely achieve an even lower energy consump-
tion compared to simply throttling the main
core’s operating frequency, which is what we
demonstrate in this article.
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Moreover, contrary to adapting the CPU’s
performance to network latency, the network
latency could also be adapted to the CPU’s
performance. Web performance is less sensi-
tive to network latency on a slow CPU, and
therefore under circumstances where the
CPU is running at low performance, or sim-
ply on a low-end feature phone, it is possible
to throttle the network latency, or even switch
to a lower-generation cellular network con-
nection to save energy.2
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