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Abstract
While many methods have been proposed to ensure data
quality for objective tasks (in which a single correct re-
sponse is presumed to exist for each item), estimating
data quality with subjective tasks remains largely unex-
plored. Consider the popular task of collecting instance
ratings from human judges: while agreement tends be
high for instances having extremely good or bad proper-
ties, instances with more middling properties naturally
elicit a wider variance in opinion. In addition, because
such subjectivity permits a valid diversity of responses,
it can be difficult to detect if a judge does not under-
take the task in good faith. To address this, we propose a
probabilistic, heteroskedastic model in which the means
and variances of worker responses are modeled as func-
tions of instance attributes. We derive efficient Expec-
tation Maximization (EM) learning and variational in-
ference algorithms for parameter estimation. We ap-
ply our model to a large dataset of 24,132 Mechani-
cal Turk ratings of user experience in viewing videos
on smartphones with varying hardware capabilities. Re-
sults show that our method is effective at both predicting
user ratings and in detecting unreliable respondents.

1 Introduction
Though many methods have been proposed for evaluat-
ing data quality and worker performance in crowdsourc-
ing, prior research has typically assumed purely-objective
tasks in which each question has a single correct answer.
At the other extreme, purely-subjective (i.e., opinion) tasks
permit a wide range of valid responses with little ex-
pectation of agreement between individuals (e.g., asking
one’s favorite color or food). Between these simple ex-
tremes, however, lies a wide, interesting, and important
space of partially-subjective tasks in which answers are only
partially-constrained (Tian and Zhu 2012). Such tasks have
received scant attention in prior crowdsourcing research,
both in characterizing the nature of such subjectivity, as well
as in proposing appropriate modeling techniques for evalu-
ating data quality and worker performance in the absence of
a simple gold standard for measuring correctness.

In this paper, we consider the popular task of collecting
human ratings of instances having varying properties. While
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people often agree in rating intances with extremely good
or bad properties, instances with more middling properties
naturally exhibit wider variance in opinion. Also, it can be
difficult to detect if a respondent does not undertake a task
in good faith when a diversity of responses are plausible.

More specifically, we consider a task in which human
judges are asked to provide ordinal ratings of instances on
a scale (e.g., from 1-5). While one expects ratings to vary
among respondents as a function of item properties and per-
sonal preferences, understanding how these ratings are dis-
tributed with respect to instance properties can be quite valu-
able. For example, someone developing a new product might
want to predict expected customer satisfaction as a function
of different product options; how many potential customers
would be pleased by a particular configuration, and are cus-
tomer needs sufficiently diverse to merit offering multiple
versions of the product? How much variance is there in con-
sumer perceptions across the configurations offered?

To address such questions, we propose a probabilistic,
heteroskedastic model (Bishop 2006; Bishop and Quazaz
1997) in which both mean and variance are modeled as func-
tions of instance properties. Our method formalizes a sim-
ple intuition: if someone consistently provides ratings that
are ‘far’ from others’, that person is probably less reliable.
Critically, this notion of ‘far’ is modeled as varying in re-
spect to each particular configuration of the instance (i.e.,
the relative subjectivity of a given instance’s properties). For
instances that are apparently more subjective (the configura-
tion is not clearly good or clearly bad), the judge’s repu-
tation will be penalized less if her response deviates from
the mean compared to scenarios in which most judges are
in agreement and yet she dissents. This is similar to the ob-
jective task analog in which greater disagreement on a given
question is taken to indicate greater question difficulty, with
respondents penalized less for missing more difficult ques-
tions (Whitehill et al. 2009). While Tian and Zhu (2012)
also addressed subjective tasks, they model subjectivity only
through observed responses, with no notion of underlying
properties shared across questions. They also make a strong
assumption that all workers must answer all questions.

We adopt data from Halpern, Zhu, and
Janapa Reddi (2016)’s study in which each instance to
be rated is a short video of user interaction with a mobile



application under a particular hardware configuration1.
Workers watch the video and rate from 1-5 how satisfied
they would be with the hardware configuration given the
application performance shown in the video. Does the
hardware seem sufficiently capable to support smooth
interaction with the mobile application (5), or or does the
application seem to struggle to run on legacy hardware, with
jerky or sluggish performance (1)? The authors sought to
study how user satisfaction changes with varying hardware
configuration, such as CPU frequency, and what hardware
design techniques could improve user experience.

Contributions. We develop a probabilistic approach to
model subjective ratings collected from a crowd. We ad-
vocate the importance of treating rating response variance
as a function of the attributes of the item being rated, i.e.,
to model heteroskedastic variance. We believe that the no-
tion of heteroskedastic variance may be less familiar to some
communities who collect subjective responses from human
subjects, and who might otherwise tend to apply standard
linear regression to such data today. We show that such sim-
pler variance modeling suffers significant loss of fidelity.

More significantly, we present a model specification and
an Expectation Maximixation (EM) learning algorithm. We
also present a Bayesian version with efficient parameter es-
timation via variational inference. To show the merit of our
approach, we report extensive experiments on Halpern, Zhu,
and Janapa Reddi (2016)’s large dataset of 24,132 Mechan-
ical Turk ratings of smartphone user satisfaction for varying
hardware configurations. To facilitate reproducibility and fu-
ture work, our source code is available online2.

2 Related work
Whereas subjective opinion (or polling) tasks permit any an-
swer that reflects an honest opinion, objective annotation
tasks rely on shared guidelines which steer annotators to
produce similar annotations for a given input example. How-
ever, every annotation task exhibits some degree of disagree-
ment, even among trusted annotators, with harder annotation
tasks intuitively yielding greater disagreement. Hence it is
critical with new annotation tasks that multiple-annotation is
performed on a subset of the data so that inter-coder agree-
ment can be measured (Artstein and Poesio 2008). This al-
lows one to gauge task difficulty and establish an upper-
bound against which reasonable performance expectations
can be set for evaluating the performance of noisy algo-
rithms and non-expert crowds (Gurari et al. 2015).

While some work has investigated use of multiple annota-
tions per example in training or evaluation (Sheng, Provost,
and Ipeirotis 2008), use of a single label per example is far
more common (by either performing only single labeling
or resolving disagreement between labels, manually or by
automatic aggregation). The extreme assumption of fully-
objective tasks is that any disagreement with this gold stan-
dard reflects error. Much research on label aggregation op-
erates in this space, modeling worker reliability or accuracy
in relation to this gold standard (Dawid and Skene 1979;
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Sheshadri and Lease 2013). Some work has captured the in-
tuition that annotators will tend to disagree on more diffi-
cult examples (Whitehill et al. 2009). Similarly, some work
has recognized that individuals bring different biases in how
they understand and internalize annotation guidelines, and
that we should penalize annotators less for making system-
atic errors reflecting bias (correctable through calibration)
vs. random errors (Ipeirotis, Provost, and Wang 2010).

Some researchers have found it useful to cluster anno-
tators while still subscribing to the notion of a single gold
standard (Kajino, Tsuboi, and Kashima 2013; Venanzi et
al. 2014; Kovashka and Grauman 2015; Nguyen, Wallace,
and Lease 2015). These clusters group annotators with sim-
ilar abilities or biases to improve estimation and calibration.
For example, Kajino, Tsuboi, and Kashima (2013) consider
synthetic data with two clusters (“good” vs. “bad” anno-
tators) and real-data having unknown latent clusters. Ko-
vashka and Grauman (2015) pursue the idea of Schools of
Thought (SoT). However, they still assume that “there is
some single, common interpretation of the property shared
consistently by all human viewers – namely, that a single or-
dering of images from least to most [attribute] is possible.”

Other work has gone farther to suggest that the notion of
a single, universal gold standard becomes problematic when
different communities might be expected to exhibit valid dis-
agreement (Sen et al. 2015). For example, one could imag-
ine conservatives vs. liberals disagreeing on a political la-
beling task, with neither group being more correct. In such
a case, while we might aggregate multiple labels within a
group to induce group consensus, naively aggregating such
multi-modal data across groups would likely induce a gold-
standard acceptable to no one. Instead, on such tasks we
might recognize a plurality of multiple, distinct gold stan-
dards against which algorithms should be benchmarked. In
addition, note that this framing still subscribes to the no-
tion of gold standards, but generalizes it from being univer-
sal (singleton) to group-based (plural). A similar SoT fram-
ing suggests that annotators naturally cluster into different
groups based on their expertise and how they perceive a
given task (Welinder et al. 2010).

In this work, we focus on the subjective task of rela-
tive rating for which disagreement is particularly notori-
ous and examples abound in practice: e.g., judging movie
or product quality (Adomavicius and Tuzhilin 2005), movie
maturity (Ipeirotis, Provost, and Wang 2010), the similar-
ity of words (Snow et al. 2008), relative attributes of fash-
ion (Kovashka and Grauman 2015), relevance of search re-
sults (Zhang et al. 2014), or the quality of an image (Ghadi-
yaram and Bovik 2016) or hardware configuration (Halpern,
Zhu, and Janapa Reddi 2016). HCI and general survey de-
sign in marketing/psychology often check self-consistency
of responses rather than inter-worker (peer) agreement
Zhang et al. (2014). Individuals may disagree with everyone
else provided they are at least self-consistent.

In contrast to objective tasks, measures of inter-coder
agreement (Artstein and Poesio 2008) and “gold standards”
are less meaningful when applied to relative ratings as far
less agreement is expected. While it may still be useful
to aggregate ratings (e.g., to compute the mean or me-



dian), such aggregation is not viewed as having captured
the group’s consensus, and it masks valuable information
about the range of opinions (Ghadiyaram and Bovik 2016).
Instead, it is typically more informative and useful to model
the actual distribution of individual ratings. Similar to the
earlier discussion of SoT, collaborative filtering and recom-
mendation (Adomavicius and Tuzhilin 2005) is also based
on grouping similar users, premised on the idea that similar
users will like similar items (i.e., rate those items similarly).
As in marketing and polling, data mining is often employed
to discover groups of consumers or voters exhibiting similar
behavior, or predict how a given group might rate a given
item (e.g., mean and variance).

Tian and Zhu (2012) assume questions may have multiple,
valid answers, but without any notion of common properties
shared across questions. As a result, they can discover de-
gree of subjectivity (i.e., variance) only through the number
of distinct answers a question receives. They also assume
that every worker has labeled every instance, which lim-
its applicability to typical crowdsourcing settings in which
workers freely choose to do as little or much work as they
like. In contrast, we make no such requirement of workers,
and each rating question in our task is parameterized by a
set of shared properties (i.e., a particular hardware configu-
ration). This allows us to model relationships between ques-
tions, and to encode prior beliefs (e.g., that extreme con-
figuration questions will be more objective while middling
configuration questions will be more subjective).

Related work in recommender systems has investigated
‘shilling attack’ detection and resilience, where faked user
profiles and ratings are inserted (Gunes et al. 2014) to in-
crease/decease the popularity of some instances or to dis-
crupt the system. We do not model unreliable ratings as ad-
versarial, and to our best knowledge, previous work in that
area has not used instance-level features, as in our work.

With respect to probabilistic modeling in crowdsourcing,
since the classical work of Dawid and Skene (1979), re-
cent work has extended the idea to adopt a Bayesian ap-
proach (Liu and Wang 2012; Kim and Ghahramani 2012),
classification models (Raykar et al. 2010), worker dynam-
ics (Simpson et al. 2013), communities of workers (Venanzi
et al. 2014), instance-level features (Kamar, Kapoor, and
Horvitz 2015), and worker demographic features (Lakkaraju
et al. 2015). The common theme in these papers is to model
the true label for each instance as a hidden variable. Al-
though some models estimate the variance of true labels,
critically, these variance estimates measure the model’s un-
certainty due to limited data; with unlimited data, these vari-
ances would go to zero. In contrast, our model’s variance
estimates captures inherent subjectivity of the instances, per-
mitting non-zero variance regardless of training data size.

3 Method
3.1 Model
In the following, we use i to index instances and j to index
workers. Let Lij be the label given by worker j for instance
i. In this case, Lij is a rating on a scale from 1 to 5. We
assume that for each label Lij , there is a latent variable Zij

indicating whether the label is reliable or not. If Zij = 1
then Lij is reliable and assumed to be a sample from a Nor-
mal distribution with mean and standard deviation predicted
by two linear models conditioned on the features of instance
i (which we will describe shortly). If Zij = 0 then Lij is
assumed to be a sample from a fixed distribution, indepen-
dent of the instance i. Here, we have modeled ordinal ratings
by the continuous Normal distribution. Although the Normal
distribution is over real numbers, it does capture the order of
the ratings and is also easy to work with. This is a common
modeling technique, widely used in recommender system,
e.g., in Salakhutdinov and Mnih (2008)’s work.

While a simple ‘spammer’ model might select between
possible labels uniformly at random, we speculate that disin-
genous raters will tend to avoid extreme ratings (e.g., 1 or 5),
which could be far off the mark and more easily detected,
and instead prefer ratings close to the middle of the scale
(e.g., 2-4). We thus assume that given Zij = 0, Lij has a
Normal distribution with mean at the rating scale’s midpoint.

Another common simplifying modeling assumption is
that 100% of a worker’s labels are either spam or ham. In re-
ality, a rater can easily alternate between working diligently
vs. becoming bored, tired, or otherwise inattentive. To ac-
count for this, we assume a parameter θj specifying the pro-
portion of disingenous ratings by worker j. For example,
θj = 0.2 means that worker j generates unreliable labels
80% of the time. This type of modeling technique is often
use in discrete choice model in economics (Greene 2009).

These modeling assumptions can be summarized by:

Zij ∼ Ber(θj) (1)

Lij |Zij = 1 ∼ N (µi, σ
2
i ) (2)

Lij |Zij = 0 ∼ N (3, s) (3)

where 3 splits the 1-5 rating range, s is the unreliable label
variance; µi and σi are the mean and standard deviation of
reliable ratings of instance i, predicted by two linear models:

µi = wTxi (4)

σi = exp(vTxi) (5)

where xi is the feature vector for instance i and w and v are
parameters to learn (the exp function is used to make sure
σi is positive). By modeling the variance as function of the
instance features, we have made the heteroskedastic assump-
tion. This is in contrast with the homoskedastic assumption
in standard linear models that assume a fixed variance.

Figure 1 shows the factor graph for our model. This de-
picts the (partially) Bayesian variant, which we present in
further detail in Section 3.3.

3.2 Learning
To learn the parameters (w,v, s and θ), we use Expectation
Maximization (EM) (Dempster, Laird, and Rubin 1977).
The E-step infers the posterior distribution over the hidden
variables {Zij∀i, j} by evaluating (the right hand side of):

Pr(Zij = 1|L) ∝ N (Lij |µi, σi) · Ber(Zij = 1|θj) (6)
Pr(Zij = 0|L) ∝ N (3, s) · Ber(Zij = 0|θj) (7)
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Figure 1: The factor graph for our model. Circles represent
random variables (shaded ones are observed), squares repre-
sent factors, diamonds are deterministic functions, edge end-
points (µ,C, θ) are unknown constants or parameters, plates
denote repetitions, and dotted plates are gates. In this case,
the value of Zij is used to select the parameters for the Nor-
mal distribution; see Equations 2 and 3. We elide the trans-
formation (exp) function applied to vTx for simplicity.

and normalizing these two quantities to obtain tij =
Pr(Zij = 1|L), where tij is the posterior probability that
the label for instance i by worker j is reliable.

Let
∑
ij be the sums over all instances and all labels for

each instance. In the M-step, we want to maximize the ex-
pected complete data log likelihood (where the expectation
is with respect to the posterior computed in the E-step):

Q(w,v) =
∑
ij

EZij · lij(w,v, zij)

=
∑
ij

tij · lij(w,v, 1) + (1− tij) · lij(w,v, 0)

(8)

where lij is the contribution to the likelihood of a label:

lij(w,v, zij) = log Ber(Zij = zij |θj)+
I(zij = 1) · logN (Lij , µi, σ

2
i )+

I(zij = 0) · logN (3, s)

(9)

The gradients of Q with respect to w and v can be evalu-
ated as follows:

∂Q

∂wk
=
∑
i,j

Lij −wTxi
σ2
ij

xiktij (10)

∂Q

∂vk
=
∑
ij

(
−xk +

(Lij −wTxi)
2

σ2
ij

xik

)
tij (11)

For the actual maximization of w and v, we us the BFGS al-
gorithm (experiments with stochastic gradient descent were
faster but resulted in worse performance). To estimate the
parameter s, we simply evaluate the weighted sample vari-
ance of all the labels, where the weight for a label is the
posterior that the label is unreliable:

s =

∑
i,j(1− tij)(Lij − 3)2∑

ij(1− tij)
(12)

3.3 Bayesian Model of Worker Reliability
Our method so far has assumed a fixed parameter θj for
each worker j. In practice, we would like to have a mea-
sure of ‘confidence’ for each estimate of θ. For example,
suppose worker 1 has labeled 10 instances and worker 2
has labeled 100 instances. In this case we should be more
confident regarding θ2 than θ1. The Bayesian framework
provides a principled way to quantify the confidence in
our estimates. Furthermore, a distributional emtimate would
make the model more robust to overfitting. We thus adopt a
Bayesian treatment of θj , introducing a prior:

θj ∼ Beta(A,B) (13)

After assuming this prior distribution over θj , we observe an
interesting analogy between our model and Latent Dirichlet
Allocation (LDA) (Blei, Ng, and Jordan 2003), which mod-
els ‘topics’ in discrete data such as text. Roughly speaking,
a worker corresponds to a document, a label corresponds to
a word, and a School of Thought (SoT) (Tian and Zhu 2012)
corresponds to a topic. Our model here assumes two SoT:
reliable and unreliable, but the model can be extended to in-
clude additional ‘schools’. Our model’s generation of work-
ers and allocation of SoTs to workers are the same as LDA’s
generation of documents and allocation of topics. Our label
generation, though, differs from LDA’s word generation.

Unfortunately, with the priors on θs, closed-form EM up-
dates are not possible. We develop a meanfield variational
approach similar to Blei, Ng, and Jordan (2003)’s. Varia-
tional inference (Wainwright and Jordan 2008) aims to ap-
proximate the posterior distribution over all hidden variable
given the data, which in our model is p(z,θ) = Pr(z,θ|L),
where z,θ and L are vectors of Zij , θj and Lij ∀i, j. The
idea is to introduce a function over the same variables:
q(z,θ) and perform optimization to minimize the KL diver-
gence KL(q||p), making q ‘close’ to p. By minimizing this
divergence, we maximize a lower bound on the data log like-
lihood. For the optimization to be efficient, q should have a
simple form. The meanfield assumption is that q factorizes:

q(z,θ) =
∏
ij

q(Zij)
∏
j

q(θj) (14)

We further assume the forms of the factor functions q (dis-
ambiguated by argument):

q(Zij) = Ber(γij) (15)
q(θj) = Beta(αj , βj) (16)

where γij , αj and βj are the variational parameters that
should be selected to minimize the above KL divergence.



This optimization problem can be solved via coordinate de-
scent: optimizing (or updating) one factor while keeping all
others fixed and iterate until convergence. By following the
meanfield formulation (see, for example, (Murphy 2012, sec
21.3)), we can derive the corresponding update equations.
For Zij , we have:

q∗(Zij = 0) ∝ N (3, s) · exp{Eq(θj) log(1− θj)} (17)

q∗(Zij = 1) ∝ N (Lij |µi, σi) · exp{Eq(θj) log(θj)} (18)

The expectations in these equations can be evaluated effi-
ciently as follows:

Eq(θj) log(θj) = Ψ(αj)−Ψ(αj + βj) (19)

Eq(θj) log(1− θj) = Ψ(βj)−Ψ(αj + βj) (20)

where Ψ is the Digamma function. To update the factors on
θ, we have:

q∗(θj) ∝ Beta(Aj , Bj)

exp

{∑
i

Eq(zij) log Ber(Zij |θj)

}
∝ Beta(Aj +

∑
i

q(Zij = 0),

Bj +
∑
i

q(Zij = 1))

(21)

Equation 17 and 18 together define the update for each hid-
den variable Zij , which identifies whether the label for in-
stance i by worker j is reliable. This update is based on
the likelihood of that label and the current approximation of
worker j quality (which is θj). Equation 21 updates the ap-
proximation over θj by starting from the Beta prior, consid-
ering all the labels provided by worker j, and then summing
up the current approximations over the indicators Zij . In our
implementation, we repeatedly apply these update equations
until the average change in the parameters is less than 0.01.

The variational inference procedure described above
plays the role of the E-step in a variational EM approach.
The M-step can be performed in a similar manner as in the
previous section.

4 Evaluation
4.1 Evaluation Setup
Dataset We use a large dataset of Mechanical Turk rat-
ings collected by Halpern, Zhu, and Janapa Reddi (2016).
This dataset consists of 370 hardware configurations. Each
configuration (modeled as an instance) is a particular mobile
application (one of 13) running on a given CPU and GPU.
For example, one included configuration runs the ‘YouTube’
application on a CPU with a frequency 2.5 GHz, with 3 cores
enabled, and with a GPU frequency of 320 MHz. For each of
7 “Current Generation” applications, there are 28 configura-
tions, while each of 6 “Next Generation” applications have
29 configurations (7x28 + 6x29 = 370 configurations).

For each configuration, a short video (about one minute)
of an user interaction is recorded. For instance, the user

opens YouTube, does a search and plays a clip. Workers are
asked to watch the video and provide a rating from 1 to 5, in-
dicating how satisfied they would be with the hardware con-
figuration given the performance of the application shown
in the video. Does the hardware seem sufficiently capable to
support smooth interaction with the mobile application (5:
“very satisfied”), or or does the application seem to struggle
to run on legacy hardware, with jerky or sluggish perfor-
mance (1: “very unsatisfied”)? Approximately 60 different
worker ratings were collected for each configuration, total-
ing 24,132 ratings collected from 3,241 workers.

We expect that for better configurations (high frequencies,
more cores), the user will be more satisfied and the average
ratings will be higher. Furthermore, for configurations that
are extremely good or bad, the workers will tend to agree
with one another more often. For the configurations hav-
ing middling properties, we expect greater disagreement, or
higher variance (of the ratings distribution).

Configurations are represented by the feature vector:

xi =[I(Angry Bird), ..., I(Youtube),CPU freq, Cores, GPU freq]

By including 13 indicators (one for each application), we
can make effective predictions across applications. Addi-
tional features used in prediction are the CPU frequency, the
number of cores enabled, and the GPU frequency. We further
experimented with more complex features, including poly-
nomial and interaction terms, but these experiments showed
very similar results, so we omit reporting them.

We randomly split the 370 configurations into 60% train-
ing data, 20% valildation data, and 20% test data. We do
not control for applications in our sampling, thus we expect
all 13 applications to be represented in each division of the
data. In Section 4.3, we experiment with sub-sampling the
training data further to investigate prediction accuracy un-
der sparser training conditions.

Methods We evaluate the two different versions of our
heteroskedastic model:

1. NEW: the original model with EM learning (Section 3.2).

2. B-NEW: the Bayesian model with variational inference
(Section 3.3).

We initalize parameters W and V using parameters of LR2
(see Section 4.3). We use the validation set to tune the three
hyper-parameters by searching in appropriate ranges (see
Table 1). The first two (nV and nW ) are a form of early
stopping that prevents overfitting of the parameters (W and
V ). The last one (hθ) is the inital value for the parameter
θj for each worker j, which represents an initial guess of
worker j’s reliability. For the Bayesian model, we reuse the
same (nV = 1 and nW = 3) and set the Beta prior to A = 8
and B = 2 based on the final value hθ = 0.8 (recall that
Beta(A,B) is the prior belief of each worker’s reliability).

4.2 Task 1: Prediction with Reliable Raters
Our first set of experiments assume that our human subjec-
tive raters are entirely reliable. In this case, we do not need to



Hyper-parameters Search Range Final value
nV : number of EM iterations that update V {1, 2, 3} 1
nW : number of EM iterations that update W {1, 2, 3} 3
hθ: initial value for θj , for each worker j {.7, .8, .9, .95} 0.8

Table 1: Hyper-parameters are tuned on validation data based on search ranges. Final values are shown.

Figure 2: Mean Absolute Error (MAE, lower is better) on
the test set with respect to mean (top) and variance (bot-
tom). Along the x-axis, we vary the proportion of configu-
rations used for training, e.g., with half of the configurations
used for model training at x = 0.5. LR is (homoskedastic)
Linear Regression, whereas NEW assumes heteroskedastic
variance. Results are shown after averaging over 5 runs.

detect any unreliable workers, but instead can focus our ef-
fort entirely on predicting the means and variances of unseen
configurations in our partially-subjective modeling task.

Given a training set of configurations with labels, for each
configuration in an unlabeled test set, we wish to predict
the mean and variance of its ratings. As motivated in Sec-
tion 1, while one expects ratings to vary among respondents
as a function of item properties and personal preferences,
one needs to know specifically how these ratings are dis-
tributed with respect to instance properties. For example,
someone developing a new product might like to gauge ex-
pected customer satisfaction as a function of different prod-
uct options, understanding how many potential customers
would be pleased by a particular configuration, or whether
customers and their needs are sufficiently diverse to merit
shipping multiple versions of the product. How much vari-
ance is there in consumer perceptions?

Evaluation Metric. We adopt Mean Absolute Error
(MAE) of the predicted means and variances compared to
the gold values (in the test set). These gold values are com-
puted as the empirical means and variances of the ratings
observed in the dataset for each configuration.

Baseline we expect that simple Linear Regression (LR)
is very likely to be the most common method that many
researchers and practioners would turn to today, due to its

simplicity, familiarity (from being covered in most statistics
courses), and continuing widespread use in both practice (in-
dustrial and clinical) and in published research studies.

However, standard LR implicitly makes a strong assump-
tion of homoskedasticity (i.e., that variance in user ratings
remains constant across configurations). This assumption
is extremely restrictive with subjective tasks, such as our
partially-subjective scenario, because instances will differ in
their subjectivity as a function of their configurations. To
show the importance of this issue in modeling the variance
of our data, we compare the heteroskedastic approach vs.
LR’s homoskedasticity for this estimation task.

Because this first experiment assumes that human raters
are entirely reliable, we utilize a simpler version of our
heteroskedastic approach which does not model unreliable
workers and labels. Specifically, we set all indicators Zij to
1 (implying that all labels are reliable and effectively ‘dis-
abling’ our reliability model). We show that heteroskedastic
modeling provides far better variance estimates while mod-
estly improving the mean estimates as well.

Figure 2 presents results of comparing homoskedastic LR
to the simplified version of our heteroskedastic model. In the
top sub-plot of Figure 2, one can observe that the latter as-
sumption improves prediction of the means. Although the
mean prediciton model in our method is essentially LR, ac-
counting for the variance in the variances has improved its
performance. However, results with respect to variance pre-
diction (bottom sub-plot) clearly indicate that the constant
variance estimated by homoskedastic LR is a very poor fit
for the subjective ratings in our data. In contrast, the het-
eroskedastic nature of our our method enables it to effec-
tively model the different variances for different configura-
tions. With such a striking difference, the conclusion seems
clear: it is critical to account for heteroscedasticity in worker
responses when modeling such subjective tasks.

4.3 Task 2: Prediction with Unreliable Raters
As motivated in Section 1, partially-subjective tasks rep-
resent a wide, interesting, and important class of tasks
in which answers are partially-constrained (Tian and Zhu
2012). While we can expect most workers will undertake
tasks in good faith, some may not. Detecting such cases be-
comes vastly more difficult with subjective tasks because the
questions posed permit a valid diversity of responses.

Given a set of labeled configurations with some unknown
proportion of unreliable workers, we wish to predict the
means and variances, as in Task 1: Prediction with Reliable
Raters (Section 4.2). However, we also wish to detect unre-
liable workers. The output for this detection task is, for each
worker, the probability that the worker is unreliable.

However, we face a fundamental challenge in pursuing



Figure 3: The Unreliable Label Distribution is collected em-
pirically by asking workers to “pretend to be unreliable and
rate a video without watching it.” Interestingly, those pre-
tending to do the task prefer 2 and 4 ratings to 3.

this new line of research: when crowdsourcing “in the wild”,
we do not know who the unreliable workers are. We there-
fore simulate unreliable workers as realistically as possible
and evaluate under a wide range of possible conditions that
could be of practical interest.

Unreliable Label Distribution To simulate unreliable
workers as faithfully as possible, we posted a Mechanical
Turk task in which workers were asked to pretend to be un-
reliable and enter a false rating between 1 and 5, as if they
were performing the task but not really doing the work. 10
workers provided 20 labels each, producing 200 labels in to-
tal. Figure 3 shows the resulting empirial distribution.

As expected, workers generally try to avoid the extreme
ratings of 1 and 5. More surprising, however, is that the pro-
portion of 3s is slightly lower than 2s and 4s. Thus, as in
practice, our model must contend with actual observed be-
havior differeing from its modeling assumptions (of normal-
ity), with unreliable labels generated from the crowd’s ob-
served empirical distribution of false ratings.

Simulation To generate a ‘gold standard’ of unreliable
workers and to explore our method’s performance under
varying conditions, we simulate unreliable workers and their
labels in the training set. Concretely, we consider five evalu-
ation parameters that specify the simulation and evaluation:

1. Proportion of Unreliable Workers (default 0.1). For the
default value, 10% of the workers are randomly selected
to be replaced with ‘unreliable’ workers, with ratings gen-
erated according to the following item below.

2. Proportion of Unreliable Ratings (default 0.8). For the
default value, an unreliable worker provides an unreli-
able rating 80% of the time. In our simulation, for each
worker that is deemed unreliable, 80% of her ratings are

randomly selected and replaced by samples from the ‘Un-
reliable Label Distribution’ (described below).

3. Proportion of Configurations Trained On (default 1.0).
The proportion of the configurations in the train set that
are given to the method for training. Recall that the train-
ing set consists of 60% of the configurations; while the
validation and test sets, 20% each, are held out. By de-
fault, all training set configurations are observed.

4. Proportion of Ratings per Configuration (default 1.0). For
each configuration, this is the proportion of the ratings
that are provided during training. The dataset has roughly
60 ratings per configuration; thus 0.2 implies that roughly
12 ratings are randomly selected for each configuration.

5. Proportion of Workers Removed (default 0.0). Because
this is a real dataset, there may be a number of unknown
unreliable workers and labels. This parameter aims to al-
low us to investigate to what degree these unknown work-
ers and labels affect our results. The goal is to remove
workers likely to be unreliable, i.e., those with high Av-
erage Deviation, which we define below. This parame-
ter specifies the proportion removed. Setting it to 0.05
removes the top 5% of the most unreliable workers, as
ranked by Average Deviation, from all of the training, val-
idation and test sets.

Table 2 summarizes evaluation parameters for this task.
Parameters 1-2 explore our method’s performance under
varying unreliable workers and labels. Parameters 3-4 con-
sider sparser data conditions, where a smaller number of
configurations (or labels per configuration) is available for
training. Parameter 5 tries to ‘clean’ the data in a prepro-
cessing step to investigate the effect of unknown unreliable
workers and labels. For predicting the means and variances
of configurations in the test set, we compare the predictions
with the empirical means and variances of the labels. For de-
tecting unreliable workers, we directly evaluate the AUC of
detection with respect to the simulated unreliable workers.

Baseline For predicting mean and variance, having shown
the limitations of homoskedastic modeling of variance in
our first experiment (Section 4.2), we now adopt a stronger,
heteroskedastic baseline for these experiments. Our baseline
comprises two independent Linear Regression models (our
experiments using Support Vector Regression produced sim-
ilar results). Concretely, for each configuration, we compute
the empirical mean and variance of its rating labels. Two
Linear Regression models are then trained, one for predict-
ing the mean and one for predicting the variance from the
configuration features. We refer to this baseline as LR2.

For detecting unreliable workers, Area Under the Curve
(AUC) of the ROC curve is used as the evaluation metric.
Average Deviation (AD) is used as the baseline, as we dis-
cuss below. This is a simple and strong baseline. The limi-
tations it does have are as follows: (1) it penalizes workers
regardless to the subjectivity of the instance; (2) it approxi-
mates the true ratings mean by the average; and, (3) it does
not consider the number of ratings a worker has provided.



# Parameter Default Experimental Range
1 Proportion of Unreliable Workers 10% 0%, 5%, 10%, 15%, 20%
2 Proportion of Unreliable Ratings 80% 20%, 40%, 60%, 80%, 100%
3 Proportion of Configurations Trained On 100% 20%, 40%, 60%, 80%, 100%
4 Proportion of Ratings per Configuration 100% 20%, 40%, 60%, 80%, 100%
5 Proportion of Workers Removed 0% 0%, 5%, 10%, 15%, 20%

Table 2: Experimental parameters and their values varied for Task 2: Prediction with Unreliable Raters.

Average Deviation (AD). A simple way to measure the
quality of a label is to look at its deviation (or absolute dif-
ference) from the average label (of the configuration). To
measure the quality of a worker, we can simply take the aver-
age of the deviations of his labels, expecting quality workers
to show low AD. We use this measure in the preprocessing
step and also as a baseline for unreliable worker detection.

Results Summary We report results of five experiments.
In each, we vary one experimental parameter from Table 2
while keeping others at their default values. We repeat each
experiment five times and report the average.

The EM-Based consistenly performs far better than the
LR2 baseline across all three cases of estimating means, es-
timating variances, and detecting unreliable workers. The
benefit of joint modeling is clearly evidenced.

Comparing the Bayesian model (B-NEW) to NEW is
more mixed. B-NEW’s strength lies in achieving lower er-
ror in predicting the variances, and it achieves compara-
ble error in predicting means. However, its performance is
worse in detecting unreliable workers (and sometimes even
worse than the LR2 baseline). By representing workers by
distributions (instead of point estimates), B-NEW is more
robust to overfitting of the parameters W and V , hence im-
proving variance prediction. However, B-NEW’s priors on
workers introduce a bias vs. unreliable workers, and thereby
detection performance suffers. Given the different relative
strengths of NEW and B-NEW, best performance could be
achieved by using the two methods in tandem.

Detailed Results Figure 4a shows results of varying ex-
perimental Parameter 1: Proportion of Unreliable Workers.
We find that with higher proportions of unreliable workers,
the Linear Regression 2 (LR2) baseline deteriorates quickly
while our model maintains good performance (except that
B-NEW is slightly worse in the unreliable worker detection
task; we discuss this further below). For the case when no
unreliable workers are simulated, our method is still as good
as the baseline for variance and slightly better for mean. The
baseline predicts mean and variance seperately. By using a
joint model, our method has improved the mean prediction.

In Figure 4b, we present results in the same format ob-
served when varying experimental Parameter 2: the Propor-
tion of Unreliable Ratings: how often an unreliable worker
provides an unreliable label. We observe a similar pattern
for the task of predicting mean and variance in the top and
middle plot. For the second task, the results are intuitive:
workers that give unreliable labels more often are easier to
detect using any method.

In the next two experiments, we varied experimental Pa-
rameter 3: Proportion of Configurations Trained On (the
proportion of configurations available for training the model
(Figure 4c), and experimental Parameter 4: Proportion of
Ratings per Configuration, the proportion of labels avail-
able per configuration (Figure 4d). Overall, while methods
perform better with more data, as expected, our model also
tends to achieve higher improvement over the baselines.

In the last experiment, we vary experimental Parameter
5: Proportion of Workers Removed, removing workers with
high AD in a preprocessing step (for train, validation and test
sets). From the plots in Figure 4e, we see that although the
results change slightly with varying the number of workers
removed, the order of the methods remains the same. This
suggests that the unknown unreliable workers in the dataset
do not (greatly) affect the results reported earlier.

5 Conclusion
We have identified a new problem of estimation and quality
assurance for crowdsourcing partially-subjective tasks. We
presented a novel method which makes a heteroskedastic
assumption, defining a rating generation model that distin-
guishes between reliable vs. unreliable workers and their rat-
ings. We derived an efficient EM algorithm and a variational
inference procedure for the model. In empirical evaluations
we found the method to consistenly performs far better than
a strong baseline across all three cases of estimating means,
estimating variances, and detecting unreliable workers. The
benefit of joint modeling is clearly evidenced. Moreover, we
showed that the Bayesian variant of our model can be used
to further improve the prediction of variance.

Although our evaluation is limited to one dataset, our
method can be easily generalized to other rating datasets. A
fundamental challenge in pursuing this new research prob-
lem for partially-subjective tasks was it involved crowd-
sourcing “in the wild”, where we do not know who the un-
reliable workers are. While we do our best to realistically
simulate unreliable workers and evaluate under a wide range
of possible conditions of interest, we would like to pursue
further data collection to better identify and characterize un-
reliable working behaviors for further realism.

In additional future work, we would like to investigate
better learning algorithms, such as an empirical Bayes ap-
proach that learns a good prior. We are also interested in
using our model to visualize Schools of Thought (Tian and
Zhu 2012) in the data, similar to LDA topic model (Blei, Ng,
and Jordan 2003). Extension to product ratings data with ad-
versarial ratings would also be interesting to pursue.



(a) Varying the Proportion of Unreliable Workers. (b) Varying the Proportion of Unreliable Ratings.

(c) Varying the Proportion of Configurations Trained On. (d) Varying the Proportion of Ratings per Configuration.

(e) Varying the Proportion of Workers Removed.

Figure 4: Results of varying the five different experimental parameters from Table 2 (on the x-axis). Each figure includes 3
plots. Top: Mean Absolute Error (MAE) for mean (lower is better). Middle: MAE for variance. Bottom: Area Under Curve
(AUC) for unreliable worker detection (higher is better). All results are reported after averaging over 5 runs.
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